Skip to main content
Log in

The ultrastructure of the developing leg ofDrosophila melanogaster

  • Published:
Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The ultrastructure of the imaginal discs ofDrosophila melanogaster was compared with that of other chitogenous tissues with different developmental capacities, namely, embryonic, larval, pupal and adult epidermis. Attention was paid to features which might be correlated with specific morphogenetic activities. Previous morphological studies of imaginal discs of Diptera were analyzed in detail and a somewhat revised view of imaginal disc structure emerged. The results reveal that the imaginal discs ofD. melanogaster consist of three types of cells: cells of the single layered disc epithelium, adepithelial cells and nerves. Four types of specialized junctions connect the cells of the disc epithelium: zonulae adhaerens, septate desmosomes, gap junctions and cytoplasmic bridges. The junctions are discussed in relation to their possible roles in adhesion and intercellular communication. It was concluded that gap junctions may be a more likely site for the intercellular communication involved in pattern formation than septate desmosomes. Evidence is presented that adepithelial cells are the precursors of imaginal muscles and that some cell lines (atelotypic) are in fact lines of adepithelial cells which can differentiate into muscle.

Specific imaginal discs can be easily recognized by their overall morphology, i.e. patterns of folds. However, no ultrastructural features were found which we could correlate with the state of determination of the cells. Most differences in the ultrastructure of different discs at several developmental stages were attributable to different phases of cuticle secretion. The cells of the imaginal disc epithelium are packed with ribosomes but very little rough ER. The amount of rough ER increases rapidly at puparium formation. Cuticulin is recognizable 4–6 hours after puparium formation. Six hours after puparium formation, the cells of the disc epithelium are secreting the epicuticle of the pupa. As the imaginal disc of a leg everts from a folded sac to the tubular pupal leg, the cells of the disc epithelium change from tall columnar to cuboidal. A loss of microtubules in the long axis of the columnar cells accompanies this change. Prepupal morphogenesis of the leg appears to be caused by the change in cell shape. Evidence is presented which is incompatible with previous explanations of the mechanism of eversion of imaginal discs.

There is some turnover of the cells of the disc epithelium as evidenced by autophagy and the occasional heterophagy of a dead neighbor. However this does not appear to be an important factor in the morphogenesis of discs. Plant peroxidase which was used as a tracer of proteins in the blood was taken up from the hemolymph by the disc epithelium. Imaginal disc cells contain many lipid droplets which coalesce and are replaced by glycogen during the prepupal period.

Zusammenfassung

Die Feinstrukturen der Imaginalscheiben, der embryonalen, larvalen, pupalen und adulten Epidermis, alles chitinbildende Gewebe, wurden untersucht und miteinander verglichen. Besondere Aufmerksamkeit legten wir auf ultrastrukturelle Merkmale, die mit spezifischen morphogenetischen Vorgängen korreliert sein können. Frühere Untersuchungen über die Morphologie der Imaginalscheiben bei Dipteren wurden kritisch analysiert und führten mit unseren Resultaten zu einem etwas veränderten Bild der Scheibenstruktur. Die Imaginalscheiben vonDrosophila melanogaster bestehen aus drei Zelltypen: Zellen des einschichtigen Epithels, adepitheliale Zellen und Nerven. Die Epithelzellen weisen vier spezialisierte Zellverbindungen auf: „zonulae adherens“, „septate desmosomes“, „gap junctions“ und zytoplasmatische Brücken. Die Funktion dieser Zellverbindungen wird im Zusammenhang mit der Zelladhäsion und Zellkommunikation diskutiert. Es scheint, daß während der Musterbildung, die „gap junctions“, eher als die „septate desmosomes“, die Orte der Zellkommunikation sind. Wir haben gezeigt, daß adepitheliale Zellen Vorläufer der imaginalen Muskeln sind. Einige atelotypische Linien, die sich als Kulturen adepithelialer Zellen erwiesen, differenzieren Muskeln.

Die Imaginalscheiben können leicht an ihrer Gesamtmorphologie, d.h. an ihrem Faltenmuster erkannt werden. Ultrastrukturelle Merkmale wurden jedoch nicht beobachtet, die mit dem Determinationszustand der Zelle korrelierbar wären. Während der Entwicklung sind die meisten Unterschiede in der Feinstruktur auf verschiedene Phasen der Kutikulasekretion zurückzuführen. Die Epithelzellen der Imaginalscheiben zeigen viele Ribosomen, besitzen aber nur sehr wenig endoplasmatisches Reticulum. Dieses nimmt erst bei der Pupariumbildung stark zu. 4–6 Std nach Puparisierung ist Kutikulin nachweisbar und nach 6 Std scheiden die Epithelzellen die Epikutikula aus. Während sich die Beinscheibe vom gefalteten Sack zum röhrenförmigen Bein ausstülpt, werden die länglichen Epithelzellen kubisch. Gleichzeitig mit dieser Formänderung verschwinden die Microtubuli in der Längsachse der Zellen. Die Morphogenese des Beines im Vorpuppenstadium scheint auf eine Änderung der Zellform zu beruhen. Früher beschriebene Erklärungen für den Mechanismus der Ausstülpung sind mit unseren Beobachtungen nicht vereinbar. Autophagozytose und gelegentlich Heterophagozytose einer toten Nachbarzelle konnten in den Epithelzellen nachgewiesen werden. Dies scheint jedoch kein wesentlicher Faktor für die Morphogenese der Scheibe zu sein. Pflanzenperoxydase, als Tracer-Protein im Blut, wird vom Scheibenepithel aus der Hämolymphe aufgenommen. Scheibenzellen enthalten viele Lipidtröpfchen, die sich vereinigen und während des Vorpuppenstadiums durch Glycogen ersetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, I. P. S.: Continuity of the membrane systems in the cells of imaginal discs. Z. Zellforsch.72, 22–29 (1966).

    Google Scholar 

  • —: Differentiation of the membrane system in the cells of imaginal discs. Z. Zellforsch.88, 365–369 (1968).

    Google Scholar 

  • Auerbach, C.: The development of the legs, wings, and halteres in wild type and some mutant strains ofDrosophila melanogaster. Trans. roy. Soc. Edinb.58, 787–815 (1936).

    Google Scholar 

  • Bhaskaran, G., Sivasubramanian, P.: Metamorphosis of imaginal discs of the housefly: evagination of transplanted discs. J. exp. Zool.176, 385–396 (1969).

    Google Scholar 

  • Bodenstein, D.: The postembryonic development ofDrosophila. In: Biology ofDrosophila, ed. M. Demerec, p. 267–367. New York: Hafner 1950.

    Google Scholar 

  • Brightman, M. W., Reese, T. S.: Interneuronal gap junctions. Anat. Rec.160, 460 (1968).

    Google Scholar 

  • —: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol.40, 648–677 (1969).

    Google Scholar 

  • Bryant, P. J., Schneiderman, H. A.: Cell lineage, growth and determination in the imaginal leg discs ofDrosophila melanogaster. Develop. Biol.20, 263–290 (1969).

    Google Scholar 

  • Chiarodo, A. J., Denys, F. R.: Fine structural features of developing leg discs of the blowfly,Sarcophaga bullata (Parker). J. Morph.126, 349–364 (1968).

    Google Scholar 

  • Coggeshall, R. E.: A fine structure analysis of the epidermis of the earthworm,Lumbricus terrestris L. J. Cell Biol.28, 95–108 (1966).

    Google Scholar 

  • Ephrussi, B., Beadle, G. W.: A technique of transplantation forDrosophila. Amer. Natural.70, 218–225 (1936).

    Google Scholar 

  • Fawcett, D. W., Ito, S., Slautterback, D.: The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J. biophys. biochem. Cytol.5, 453–460 (1959).

    Google Scholar 

  • Fristrom, D.: Cellular degeneration in wing development of the mutant vestigial ofDrosophila melanogaster. J. Cell Biol.39, 488–491 (1968).

    Google Scholar 

  • —: Cellular degeneration in the production of some mutant phenotypes inDrosophila melanogaster. Molec. gen. Genet.103, 363–379 (1969).

    Google Scholar 

  • Furshpan, B. J., Potter, D. D.: Low-resistance junctions between cells in embryos and tissue culture. In: Current topics in developmental biology, eds A. A. Moscona and A. Monroy, vol. III, p. 95–127. New York: Academic Press 1968.

    Google Scholar 

  • Ganin, M.: The post-embryonic development of insects. Trans. 5th Congr. Russian Natural., Warsaw, 1875 (1876). [As cited in Lowne, B. T.: The anatomy, physiology, morphology and development of the blow-fly, two volumes. London: R. H. Porter 1890.]

  • Garcia-Bellido, A.: Pattern reconstruction in dissociated imaginal disc cells ofDrosophila melanogaster. Develop. Biol.14, 278–306 (1966a).

    Google Scholar 

  • —: Changes in selective affinity following transdetermination in imaginal disc cells ofDrosophila melanogaster. Exp. Cell Res.44, 382–392 (1966b).

    Google Scholar 

  • —: Histotypic reaggregation of dissociated imaginal disc cells ofDrosophila melanogaster cultured in vivo. Wilhelm Roux' Arch. Entwickl.-Mech. Org.158, 212–217 (1967).

    Google Scholar 

  • —, Merriam, J. R.: Cell lineage of the imaginal discs inDrosophila gynandromorphs. J. exp. Zool.170, 61–76 (1969).

    Google Scholar 

  • Gateff, E., Schneiderman, H. A.: Neoplasms in mutant and cultured wildtype tissues ofDrosophila. In: Neoplasms and related disorders of invertebrate and lower vertebrate animals, eds. C. J. Dawe and J. C. Harshbarger. Nat. Cancer Inst. Monogr.31, 365–397 (1969).

  • Gustafson, T., Wolpert, L.: The cellular basis of morphogenesis in sea urchin development. Int. Rev. Cytol.15, 139–214 (1963).

    Google Scholar 

  • —: Cellular movement and contact in sea urchin morphogenesis. Biol. Rev.42, 442–499 (1967).

    Google Scholar 

  • Hadorn, E.: Differenzierungsleistungen wiederholt fragmentierter Teilstücke männlicher Genitalscheiben vonDrosophila melanogaster nach Kulturin vivo. Develop. Biol.7, 617–629 (1963).

    Google Scholar 

  • —: Problems of determination and transdetermination. Brookhaven Symp.18, 148–161 (1965).

    Google Scholar 

  • Hadorn, E.: Dynamics of determination. In: Major problems in developmental biology, ed. M. Locke, p. 85–104. New York: Academic Press 1966a.

    Google Scholar 

  • —: Konstanz, Wechsel und Typus der Determination und Differenzierung in Zellen aus männlichen Genitalanlagen vonDrosophila melanogaster nach Dauerkulturin vivo. Develop. Biol.13, 424–509 (1966b).

    Google Scholar 

  • - Proliferation and dynamics of cell heredity in blastema cultures ofDrosophila. In: Neoplasms and related disorders of invertebrate and lower vertebrate animals, eds. C. J. Dawe and J. C. Harshbarger. Nat. Cancer Inst. Monogr.31, 351–364 (1969).

  • —, Bertani, G., Gallera, J.: Regulationsfähigkeit und Feldorganisation der männlichen Genital-Imaginalscheiben vonDrosophila melanogaster. Wilhelm Roux' Arch. Entwickl. Mech. Org.144, 31–70 (1949).

    Google Scholar 

  • —, Anders, G., Ursprung, H.: Kombinate aus teilweise dissozierten Imaginalscheiben verschiedener Mutanten und Arten vonDrosophila. J. exp. Zool.142, 159–175 (1959).

    Google Scholar 

  • Haeckel, E.: Über die Gewebe des Flußkrebses. Arch. anat. Physiol. (Lpz.), p. 469–568 (1857). [As cited in: Wigglesworth, V. B., The physiology of insect metamorphosis. Cambridge: Cambridge Univ. Press. 1954.]

  • Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol.27, 137A (1965).

    Google Scholar 

  • King, R. C., Aggerwal, S. K., Aggerwal, U.: The development of femaleDrosophila reproductive system. J. Morph.124, 143–166 (1968).

    Google Scholar 

  • Kopeć, S.: The influence of the nervous system on the development and regeneration of muscles and integument in insects. J. exp. Zool.37, 15–25 (1923).

    Google Scholar 

  • Kühn, A., Piepho, H.: Über die Ausbildung der Schuppen in Hauttransplantaten von Schmetterlingen. Biol. Zbl.60, 1–22 (1940). [As cited in: Wigglesworth, V. B., The physiology of insect metamorphosis. Cambridge: Cambridge Univ. Press. 1954.]

    Google Scholar 

  • Locke, M.: The structure and formation of the cuticulin layer in the epicuticle of an insect,Calpodes ethlius (Lepidoptera, Hesperiidae). J. Morph.118, 461–494 (1966a).

    Google Scholar 

  • —: Isolation membranes in insect cells at metamorphosis. J. Cell Biol.31, 132A (1966b).

    Google Scholar 

  • —: What every epidermal cell knows. In: Insects and physiology, eds, J. W. L. Beament and J. E. Trehern. Edinburgh and London: Oliver and Boyd 1967.

    Google Scholar 

  • —: The structure of an epidermal cell during the development of the protein epicuticle and the uptake of molting fluid in an insect. J. Morph.127, 7–40 (1969).

    Google Scholar 

  • —, Collins, J. R.: The structure and formation of protein granules in the fat body of an insect. J. Cell Biol.26, 857–884 (1965).

    Google Scholar 

  • — —: Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J. Cell Biol.36, 453–483 (1968).

    Google Scholar 

  • Loosli, R.: Vergleich von Entwicklungspotenzen in normalen, transplantierten und mutierten Halteren-Imaginalscheiben vonDrosophila melanogaster. Develop. Biol.1, 24–64 (1959).

    Google Scholar 

  • Loewenstein, W. R., Kanno, Y.: Studies on an epithelial (gland) cell junction. I. Modification of surface membrane permeability. J. Cell Biol.22, 565–586 (1964).

    Google Scholar 

  • Lowne, B. T.: The anatomy, physiology, morphology and development of the blow-fly, two volumes. London: R. H. Porter 1890.

    Google Scholar 

  • Ludwig, D., Crowe, P. A., Hassemer, M. M.: Free fat and glycogen during metamorphosis ofMusca domestica L. J. N. Y. entomol. Soc.72, 23–28 (1964).

    Google Scholar 

  • McManus, J. F. A.: Histological and histochemical uses of periodic acid. Stain Technol.23, 99–108 (1948).

    Google Scholar 

  • Meyer, G. F.: Spermiogenesis in normalen und Y-defizienten Männchen vonDrosophila melanogaster undD. hydei. Z. Zellforsch.84, 141–175 (1968).

    Google Scholar 

  • Newby, W. W.: A study of intersexes produced by a dominant mutation inDrosophila virilis. Texas Univ. Publ.4228, 113–145 (1942).

    Google Scholar 

  • Nöthiger, R.: Differenzierungsleistungen in Kombinaten, hergestellt aus Imaginalscheiben verschiedener Arten, Geschlechter und Körpersegmente vonDrosophila. Wilhelm Roux' Arch. Entwickl.-Mech. Org.155, 269–301 (1964).

    Google Scholar 

  • —, Oberlander, H.: Differentiation of pulsating regions in genital imaginal discs after culturein vivo (Drosophila melanogaster). J. exp. Zool.164, 61–68 (1967).

    Google Scholar 

  • Nuesch, H.: The role of the nervous system in insect metamorphosis and regeneration. Ann. Rev. Entomol.13, 27–44 (1968).

    Google Scholar 

  • Perry, M. M.: Further studies on the development of the eye ofDrosophila melanogaster. I. The Ommatidia. J. Morph.124, 227–248 (1968).

    Google Scholar 

  • Porter, K. R.: Cytoplasmic microtubules and their function. In: Principles of biomolecular organization, eds G. W. Wolstenholme and M. O'Conner, p. 308. London: J. & A. Churchill, Ltd. 1966.

    Google Scholar 

  • Postlethwait, J. H., Schneiderman, H. A.: A clonal analysis of determination in antennapedia, a homeotic mutant ofDrosophila melanogaster. Proc. nat. Acad. Sci. (Wash.)64, 176–183 (1969).

    Google Scholar 

  • — —: Induction of metamorphosis by ecdysone analogues:Drosophila imaginal discs culturedin vivo. Biol. Bull.138, 47–55 (1970).

    Google Scholar 

  • Revel, J. P., Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol.33, C7 (1967).

    Google Scholar 

  • —, Olsen, W., Karnovsky, M. J.: A twenty-angstrom gap junction with a hexagonal array of subunits in smooth muscle. J. Cell Biol.35, 112A (1967).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).

    Google Scholar 

  • Robertson, C. W.: The metamorphosis ofDrosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morph.59, 351–399 (1936).

    Google Scholar 

  • Ruby, J. R., Dyer, R. F., Skalko, R. G.: The occurrence of intercellular bridges during oogenesis in the mouse. J. Morph.127, 307–340 (1969).

    Google Scholar 

  • Saunders, J. W., Fallon, J. F.: Cell death in morphogenesis. In: Major Problems in developmental biology, ed. M. Locke, p, 289–314. New York: Academic Press 1966.

    Google Scholar 

  • Schmidt, C.: Zur vergleichenden Physiologie der wirbellosen Thiere. Braunschweig (1845). [As cited in Wigglesworth, V. B. (1954).]

  • Schubiger, G.: Anlageplan, Determinationszustand und Transdeterminationsleistungen der männlichen Vorderbeinscheibe vonDrosophila melanogaster. Wilhelm Roux' Archiv160, 9–40 (1968).

    Google Scholar 

  • Shatoury, H. H. El.: The structure of the lymph glands ofDrosophila larvae. Wilhelm Roux' Arch. Entwickl.-Mech. Org.147, 489–495 (1955a).

    Google Scholar 

  • —: Lethal no-differentiation and the development of the imaginal discs during the larval stage inDrosophila. Wilhelm Roux' Arch. Entwickl.-Mech. Org.147, 523–538 (1955b).

    Google Scholar 

  • —, Waddington, C. H.: Functions of the lymph gland cells during the larval period inDrosophila. J. Embryol. Morph.5, 122–133 (1957).

    Google Scholar 

  • Snodgrass, R. E.: Anatomy and metamorphosis of the apple maggot,Rhagoletis pomonella Walsh. J. agric. Res.28, 1–36 (1924).

    Google Scholar 

  • —: Insect metamorphosis. Smithson. Misc. Collect.122, 1–124 (1954).

    Google Scholar 

  • —: The anatomical life of the mosquito. Smithson. Misc. Collect.139, 1–87 (1959).

    Google Scholar 

  • Telfer, W. H.: Immunological studies of insect metamorphosis. II. The role of a sex-linked portein in egg formation by the cecropia silkworm. J. gen. Physiol.37, 539–558 (1954).

    Google Scholar 

  • Tiegs, O. W.: Researches on insect metamorphosis. Part I. On the structure and post-embryonic development of a Chalcid wasp,Nasonia. Part II. On the physiology and interpretation of the insect metamorphosis. Trans. Proc. roy. Soc., S. Australia46, 319–527 (1922).

    Google Scholar 

  • Tilney, L. G.: Studies on microtubules in Heliozoa. IV. The effect of colchicine on the formation and maintenance of axopodia and the redevelopment of pattern inActinosphaerium nucleofilum (Barrett). J. Cell Sci.3, 549–563 (1968a).

    Google Scholar 

  • —: The assembly of microtubules and their role in the development of cell form. In: The emergence of order in developing systems, ed. M. Locke. New York: Academic Press 1968b.

    Google Scholar 

  • —, Porter, K. R.: Studies on the microtubules in Heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J. Cell Biol.34, 327–343 (1967).

    Google Scholar 

  • —, Hiramoto, Y., Marsland, D.: Studies on microtubules in Heliozoa. III. A pressure analysis of the role of these structures in the formation and maintenance of the axopodiaActinosphaerium nucleofilum (Barrett). J. Cell Biol.29, 77–95 (1966).

    Google Scholar 

  • Tobler, H.: Zellspezifische Determination und Beziehung zwischen Proliferation und Transdetermination in Bein- und Flügelprimordien vonDrosophila melanogaster. J. Embryol. exp. Morph.16, 609–633 (1966).

    Google Scholar 

  • Ursprung, H., Hadorn, E.: Weitere Untersuchungen über Musterbildung in Kombination aus teilweise dissoziierten Flügel-Imaginalscheiben vonDrosophila melanogaster. Develop. Biol.4, 40–66 (1962).

    Google Scholar 

  • —, Schabtach, E.: The fine structure of the maleDrosophila genital disc during late larval and early pupal development. Wilhelm Roux' Archiv160, 243–254 (1968).

    Google Scholar 

  • Weakley, B. S.: Light and electron microscopy of developing germ cells and follicle cells in the ovary of the golden hamster: twenty-four hours before birth to eight dayspost partum. J. Anat. (Lond.)101, 435–459 (1967).

    Google Scholar 

  • Wehman, H. J.: Fine structure ofDrosophila wing imaginal discs during early stages of metamorphosis. Wilhelm Roux' Archiv163, 375–390 (1969).

    Google Scholar 

  • Whitten, J.: Metamorphic changes in insects. In: Metamorphosis, eds W. Etkin and L. I. Gilbert. New York: Appleton-Century-Crofts 1968.

    Google Scholar 

  • —: Cell death during early limb morphogenesis: Parallels between insect limb and vertebrate limb development. Science163, 1456–1457 (1969).

    Google Scholar 

  • Wiener, J., Spiro, D., Loewenstein, W. R.: Studies on an epithelial (gland) cell junction. II. Surface structure. J. Cell Biol.22, 587–598 (1964),

    Google Scholar 

  • Wigglesworth, V. B.: The significance of “chromatic droplets” in the growth of insects. Quart. J. micr. Sci.83, 141–152 (1942).

    Google Scholar 

  • —: The physiology of insect metamorphosis. Cambridge: Cambridge Univ. Press 1954.

    Google Scholar 

  • —: The use of oxmium in the fixation and staining of tissues. Proc. roy. Soc. B147, 185–199 (1957).

    Google Scholar 

  • Williams, C. M., Schneiderman, H. A.: The necessity of motor innervation for the development of insect muscles. Anat. Rec.113, 560 (1952).

    Google Scholar 

  • Wyatt, G. R.: The biochemistry of sugars and polysaccharides in insects. Advances in Insect Physiol.4, 281–354 (1967).

    Google Scholar 

  • —: Biochemistry of insect metamorphosis. In: Metamorphosis, a problem in developmental biology, eds W. Etkin and L. I. Gilbert. New York: Appleton-Century-Crofts 1968.

    Google Scholar 

  • Zamboni, L., Gondos, B.: Intercellular bridges and synchronization of germ cell differentiation during oogenesis in the rabbit. J. Cell Biol.36, 276–282 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poodry, C.A., Schneiderman, H.A. The ultrastructure of the developing leg ofDrosophila melanogaster . W. Roux' Archiv f. Entwicklungsmechanik 166, 1–44 (1970). https://doi.org/10.1007/BF00576805

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576805

Keywords

Navigation