Skip to main content
Log in

Finite element modelling of creep deformation in fibre-reinforced ceramic composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-Si3N4 matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. C. Wei andP. F. Becher,Amer. Ceram. Soc. Bull. 64 (1985) 298.

    CAS  Google Scholar 

  2. J. J. Brennan andK. M. Prewo,J. Mater. Sci. 17 (1982) 2371.

    Article  CAS  Google Scholar 

  3. R. T. Bhatt,NASA Technical Report 85-C-14 (1985).

  4. H. Kodama, H. Sakamoto, andT. Miyoshi,J. Amer. Ceram. Soc. 72 (1989) 551.

    Article  CAS  Google Scholar 

  5. F. Abbe, J. Vicens andJ. L. Chermant,J. Mater. Sci. Lett. 8 (1989) 1026.

    Article  CAS  Google Scholar 

  6. J. W. Holmes,J. Mater. Sci. 26 (1991) 1808.

    Article  CAS  Google Scholar 

  7. M. Mclean,Mater. Res. Soc. Symp. Proc. 120 (1988).

  8. H. Lilholt,Compos. Sci. and Technol. 29 (1985) 277.

    Article  Google Scholar 

  9. T. L. Dragon andW. D. Nix,Acta Metall, Mater. 38 (1990) 1941.

    Article  Google Scholar 

  10. J. R. Brockenbrough, S. Suresh andH. A. Wienecke, ALCOA Laboratories Technical Report no. 57-89-35 (April 1990).

  11. J. A. Dicarlo,J. Mater. Sci. 21 (1986) 217.

    Article  CAS  Google Scholar 

  12. D. C. Larson, J. W. Adams, L. R. Johnson, A. P. S. Teotia andL. G. Hill, in “Ceramic Materials for Advanced Heat Engines; Technical and Economical Evaluation” (Noyes, Park Ridge, NJ, 1985).

    Google Scholar 

  13. J. W. Laughner andR. T. Bhatt,J. Amer. Ceram. Soc. 72 (1989) 2017.

    Article  CAS  Google Scholar 

  14. G. Morscher, P. Pirouz andA. H. Heuer,ibid. 73 (1990) 713.

    Article  CAS  Google Scholar 

  15. ABAQUS Manual,” (Hibbitt, Karlson and Sorensen Inc., Providence, RI, 1989).

  16. A. H. Chokshi, andJ. R. Porter,J. Amer. Ceram. Soc. 68 (1985) C-144.

    Article  Google Scholar 

  17. R. D. Nixon, S. Chevacharoenkul, M. L. Huckabee, S. T. Buljan andR. F. Davis,Mater. Res. Soc. Symp. Proc. 78 (1987) 295.

    Article  CAS  Google Scholar 

  18. J. W. Holmes,J. Amer. Ceram. Soc. 74 (1991) 1639.

    Article  CAS  Google Scholar 

  19. T. Fett, G. Himsolt andD. Munz,Adv. Ceram. Mater. 1 (1986) 179.

    Article  CAS  Google Scholar 

  20. R. Kossowsky, D. G. Miller andE. S. Diaz,J. Mater. Sci. 10 (1975) 983.

    Article  CAS  Google Scholar 

  21. J. W. Holmes,J. Compos. Mater. 26 (1992) 915.

    Article  Google Scholar 

  22. B. Budiansky, J. W. Hutchinson andA. G. Evans,J. Meck. Phys. Solids 34 (1986) 167.

    Article  Google Scholar 

  23. J. L. Chaboche,J. Appl. Mech. 55 (1988) 65.

    Article  Google Scholar 

  24. R. M. Arons andJ. K. Tien,J. Mater. Sci. 15 (1980) 2046.

    Article  CAS  Google Scholar 

  25. M. S. Seltzer,Amer. Ceram. Soc. Bull. 56 (1977) 418.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.H., Holmes, J.W. Finite element modelling of creep deformation in fibre-reinforced ceramic composites. J Mater Sci 27, 6341–6351 (1992). https://doi.org/10.1007/BF00576283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576283

Keywords

Navigation