Skip to main content
Log in

Intestinally derived lipoprotein particles in non-insulin-dependent diabetic patients with and without hypertriglyceridaemia

  • Originals
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

We have previously demonstrated alterations in apolipoprotein B-48 metabolism in the post-prandial state in patients with non-insulin-dependent diabetes mellitus. This study investigates the relationship between hypertriglyceridaemia and post-prandial lipoprotein metabolism. Four groups of patients were examined: non-insulin-dependent diabetic patients, with normal serum triglyceride levels (serum triglyceride <2.1 mmol l−1; haemoglobin HbA1c 5.5%±0.4%); poorly controlled, non-insulin-dependent diabetic patients with hypertriglyceridaemia (serum triglyceride >2.1 mmol 1−1; HbA1c 8.8%±0.9%); nondiabetic subjects with serum triglycerides <2.1 mmoll−1; and non-diabetic subjects with hypertriglyceridaemia (serum triglyceride>2.1 mmol l−1). Subjects were studied fasting and following a high-fat meal (1300 kcal). The triglyceride-rich lipoprotein fraction was isolated by ultracentrifugation (d<1.006 g ml−1). Apoprotein B-48, apoprotein B-100 and apoprotein E were separated on 4%–15% gradient gels and quantified as a percentage of the fasting concentration by densitometric scanning. Triglyceride-rich lipoprotein apolipoprotein B-48 and apolipoprotein B-100 post-prandial profiles demonstrated a maximum increase either at 2 h or rising still further to a peak at 6 h before falling in the diabetic groups and hypertriglyceridaemic non-diabetic subjects when compared with the normotriglyceridaemic control subjects whose levels decreased after 2 h (P<0.05). A significantly different triglyceride-rich lipoprotein apolipoprotein E profile was also exhibited by the diabetic patients (P<0.05). Levels of triglyceride-rich lipoprotein, cholesterol, triglyceride, total protein and apoprotein B were elevated in the hypertriglyceridaemic subjects, both diabetic and non-diabetic. These results indicate that hypertriglyceridaemia is associated with altered metabolism and composition of post-prandial triglyceride-rich lipoprotein particles in both poorly controlled diabetic and non-diabetic subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn FL, Hyperlipidemia in diabetes mellitus. Diabetes Metab Rev 6:47–61, 1990

    Article  PubMed  CAS  Google Scholar 

  2. Howard BV, Reitman JS, Vasquez B, Zech L, Very-low-density lipoprotein triglyceride metabolism in non-insulin-dependent diabetes mellitus. Relationship to plasma insulin and free fatty acids. Diabetes 32:271–276, 1983

    PubMed  CAS  Google Scholar 

  3. Taskinen M-R, Beltz WF, Harper I, Effects of NIDDM on verylow density lupoprotein triglyceride and apolipoprotein B metabolism: studies before and after sulphonylurea therapy. Diabetes 35:1268–1277, 1986

    PubMed  CAS  Google Scholar 

  4. Brunzell JD, Porte Jr D, Bierman EL, Abnormal lipoprotein lipase-mediated plasma triglyceride removal in untreated diabetes mellitus associated with hypertriglyceridemia. Metabolism 28:901–907, 1979

    Article  PubMed  CAS  Google Scholar 

  5. Simsolo RB, Ong JM, Saffari B, Kern PA, Effect of improved diabetes control on the effect of lipoprotein lipase in human adipose tissue. J Lipid Res 33:89–95, 1992

    PubMed  CAS  Google Scholar 

  6. Zilversmit DB, Atherogenesis: a postprandial phenomenon. Circulation 3:473–485, 1979

    Google Scholar 

  7. Wilson DE, Chan I-F, Buchi KN, Horton SC, Postchallenge plasma lipoprotein retinoids: chylomicrons remnants in endogenous hypertriglyceridemia. Metabolism 34:551–558, 1985

    Article  PubMed  CAS  Google Scholar 

  8. Curtin A, Deegan P, Owens D, Collins P, Johnson A, Tomkin GH, Alterations in apolipoprotein B48 in the post-prandial state in NIDDM. Diabetologia 37:1259–1264, 1994

    Article  PubMed  CAS  Google Scholar 

  9. Markwell MAK, Haas SM, Bieber LL, Tolbert NE, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210, 1978

    Article  PubMed  CAS  Google Scholar 

  10. Adell K, Ogbonna G, Rapid purification of DNA from whole blood for potential application in clinical chemistry laboratories. Clin Chem 36:261–264, 1990

    Google Scholar 

  11. Hixson JE, Vernier DT, Restriction isotyping of human apolipoprotein E by gene amplification and cleavage withHha 1. J Lipid Res 31:545–548, 1990

    PubMed  CAS  Google Scholar 

  12. Cohn JS, McNamara JR, Cohn SD, Ordovas JM, Schaefer EJ, Plasma apolipoprotein changes in the triglyceride-rich lipoprotein fraction of human subjects fed a fat-rich meal. J Lipid Res 29:925–936, 1988

    PubMed  CAS  Google Scholar 

  13. Patsch JR, Prasad S, Gotto Jr AM, Patsch W, High density lipoprotein 2: relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipaemia and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest 80:341–347, 1987

    PubMed  CAS  Google Scholar 

  14. Karpe F, Bard J-M, Steiner G, Carlson LA, Fruchart J-C, Hamsten A, HDLs and alimentary lipaemia: studies in men with previous myocardial infarction at a young age. Arteriosclerosis Thromb 13:11–22, 1993

    CAS  Google Scholar 

  15. Shue WHH, Shieh SM, Fue MMT, Shen DDC, Jeng CY, Chen YDI, Reaven GM, Insulin resistance, glucose intolerance, and hyperinsulinemia: hypertriglyceridemia versus hypercholesterolemia. Arteriosclerosis Thromb 13:367–370, 1993

    Google Scholar 

  16. Zimmet PZ, Hyperinsulinemia — how innocent a bystander? Diabetes Care 16:56–70, 1993

    PubMed  Google Scholar 

  17. Taskinen M-R, Hyperlipidaemia in diabetes. Baillieres Clin Endocrinol Metabol 4: 743–775, 1990

    Article  CAS  Google Scholar 

  18. Tan KCB, Cooper MB, Ling KLE, Postprandial lipoprotein metabolism in type 2 diabetes mellitus. Diabetologia 35:168, 1992

    Google Scholar 

  19. Georgopoulos A, Margolis S, Bachorik P, Kwiterovich PO, Effect of improved glycaemic control on the response of plasma triglycerides to ingestion of a saturated fat load in normotriglyceridaemic and hypertriglyceridaemic diabetic subjects. Metabolism 37:866–872, 1988

    Article  PubMed  CAS  Google Scholar 

  20. Cohn JS, Johnson EJ, Millar JS, Cohn SD, Milne RW, Marcel YL et al, Contribution of apo B-48 and apo B-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. J Lipid Res 34:2033–2040, 1993

    PubMed  CAS  Google Scholar 

  21. Nestel PJ, Billington T, Fidge NH, Slower removal of intestinal apolipoprotein B-48 than of apolipoprotein B-100 in severely hypertriglyceridemic subjects. Biochem Biophys Acta 751:422–427, 1983

    PubMed  CAS  Google Scholar 

  22. Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A, Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 106:83–97, 1994

    Article  PubMed  CAS  Google Scholar 

  23. Martins IJ, Sainsbury AJ, Mamo JCL, Redgrave TG, Lipid and apolipoprotein B48 transport in mesenteric lymph and the effect of hyperphagia on the clearance of chylomicron-like emulsions in insulin-deficient rats. Diabetologia 37:238–247, 1994

    PubMed  CAS  Google Scholar 

  24. Young NL, Lopez DR, McNamara DJ, Contributions of absorbed dietary cholesterol and cholesterol synthesized in small intestine to hypercholesterolemia in diabetic rats. Diabetes 37; 1151–1156, 1988

    PubMed  CAS  Google Scholar 

  25. O'Meara N, Devery R, Owens D, Collins P, Johnson A, Tomkin GH. Cholesterol metabolism in the alloxan-induced diabetic rabbit. Diabetes 39:626–633, 1990

    PubMed  Google Scholar 

  26. Weintraub MS, Eisenberg S, Breslow JL, Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest 80:1571–1577, 1987

    Article  PubMed  CAS  Google Scholar 

  27. Miettinen TA, Impact of apo E phenotype on the regulation of cholesterol metabolism. Ann Med 23:181–186, 1991

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtin, A., Deegan, P., Owens, D. et al. Intestinally derived lipoprotein particles in non-insulin-dependent diabetic patients with and without hypertriglyceridaemia. Acta Diabetol 32, 244–250 (1995). https://doi.org/10.1007/BF00576257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576257

Key words

Navigation