Skip to main content
Log in

The positive inotropic, antiarrhythmic and Na+, K+-ATPase inhibitory effects of the isoquinoline derivative, BIIA

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The effect of the isoquinoline derivative 3-benzylamino-5,6-dihydro-8,9-dimethoxy-imidazo-5,1-a-isoquinoline-hydrochloride (BIIA) were studied in the cat in situ and guinea-pig isolated heart preparations:

  1. 1.

    Administration of BIIA (2 mg/kg i.v.) to anaesthetized cats results in a rapid rise in cardiac (dP/dt)max, decrease in heart rate and increase in systolic and diastolic blood pressure. These effects reach their maximum within a minute and disappear within 20 min. With increasing dosage a depression in the S T-segment of the ECG is observed, being similar to that induced by cardiac glycosides. Toxic doses lead to ventricular flutter and fibrillation.

  2. 2.

    In the concentration range of 0.3–10 μmol/l, BIIA exerts a strong positive inotropic effect in isolated guinea-pig heart preparations which is not mediated via α- or β-adrenoceptors and a negative chronotropic effect in spontaneously beating right atria.

  3. 3.

    BIIA inhibits Na+, K+-ATPase preparations isolated from guinea-pig heart and kidney in the range of 5–100 μmol/l. Unlike that of cardiac glycosides, this inhibition is competitive with Na+. The concentration response curves for the positive inotropic and Na+, K+-ATPase inhibitory effects of BIIA are both one order of magnitude higher in concentration than the respective concentration response curves found for ouabain.

  4. 4.

    BIIA is more potent than quinidine in increasing the threshold for arrhythmia induced by alternating current in isolated guinea-pig atria and papillary muscles. However, at a concentration of 3 μmol/l, BIIA can itself be arrhythmogenic.

  5. 5.

    A delay of repolarisation of the cardiac action potential may account for the antiarrhythmic properties of this drug, whereas strong inhibition of Na+, K+-ATPase and a decrease in resting potential may account for its toxicity at high concentrations. As there is a decrease in the plateau phase of the action potential at positive inotropic concentrations of BIIA, the increase in the force of contraction cannot be explained by alterations in the transmembrane potential, but similar to cardiac glycosides may be attributed to an inhibition of the Na+, K+-ATPase of the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akera, T., Brody, T. M.: The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol. Rev.29, 187–220 (1978)

    Google Scholar 

  • Akera, T., Larsen, F. S., Brody, T. M.: The effect of ouabain on sodium- and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J. Pharmacol. Exp. Ther.170, 17–26 (1969)

    Google Scholar 

  • Borchard, U.: Untersuchungen zum Wirkungsmechanismus und zur pharmakologischen Charakterisierung von Lokalanästhetika. Habilitationsschrift, Düsseldorf 1978

  • Fox, A. A. L.: A new mechanism of inhibition of the Na+, K+-activated ATPase by the isoquinoline derivative BIIA. Naunyn-Schmiedeberg's Arch. Pharmacol.307, R 40, (1979a)

    Google Scholar 

  • Fox, A. A. L.: Charakterisierung des Wirkungsmechanismus von Hemmstoffen der Na+, K+-aktivierbaren, Mg2+-abhängigen Adenosintriphosphatase. Inaug. Diss., Düsseldorf 1979b

  • Fritz, P. T., Hamrick, M. E.: Enzymatic analysis of adenosine triphosphatase. Enzymol. Acta Biocat.30, 57–62 (1966)

    Google Scholar 

  • Glynn, I. M.: The action of cardiac glycosides on ion movements. Pharmacol. Rev.16, 381–407 (1964)

    Google Scholar 

  • Govier, W. C.: The mechanism of the atrial refractory period change produced by ouabain. J. Pharmacol. Exp. Ther.148, 100–105 (1965)

    Google Scholar 

  • Kass, R. S., Tsien, R. W.: Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J. Gen. Physiol.66, 169–192 (1975)

    Google Scholar 

  • Lawson, J. W.: Antiarrhythmic activity of some isoquinoline derivatives determined by a rapid screening procedure in the mouse. J. Pharmacol. Exp. Ther.160, 22–31 (1968)

    Google Scholar 

  • Nagy, E. C., Szekeres, L., Papp, J. G., Udvary, E.: The new isoquinoline derivatives with marked antianginal HE-165- and antiarrhythmic HE-36-action. In: Symposium on Pharmacology of the Heart (L. Szekeres, J. G. Papp, eds.), pp. 255–264. Budapest: Akademiai Kiado 1976

    Google Scholar 

  • Nakao, T., Tashima, Y., Nagano, K., Nakao, M.: Highly specific sodium-potassium-activated adenosine triphosphatase from various tissues of rabbit. Biochem. Biophys. Res. Commun.19, 755–758 (1965)

    Google Scholar 

  • Peper, K., Trautwein, W.: The effect of aconitine on the membrane current in cardiac muscle. Pflügers Arch.296, 328–336 (1967)

    Google Scholar 

  • Schatzmann, H. J.: Enzymatic analysis of adenosine triphosphatase. Biochem. Biophys. Acta94, 89–96 (1965)

    Google Scholar 

  • Schwartz, A., Lindenmayer, G. E., Allen, J. C.: The sodium-potassium adenosine triphosphatase, pharmacological, physiological and biochemical aspects. Pharmacol. Rev.27, 3–134 (1975)

    Google Scholar 

  • Szekeres, L., Papp, J. G., Udvary, E.: On two new isoquinoline derivatives with marked antianginal and antiarrhythmic actions. Naunyn-Schmiedeberg's Arch.284, R 79 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants of the Deutsche Forschungsgemeinschaft (SFB 30, Cardiology)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borchard, U., Fox, A.A.L. & Greeff, K. The positive inotropic, antiarrhythmic and Na+, K+-ATPase inhibitory effects of the isoquinoline derivative, BIIA. Naunyn-Schmiedeberg's Arch. Pharmacol. 312, 187–192 (1980). https://doi.org/10.1007/BF00569729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00569729

Key words

Navigation