Skip to main content
Log in

Metoclopramide and sulpiride as selective blocking agents of pre- and postsynaptic dopamine receptors

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

  1. 1.

    The effects of sulpiride and metoclopramide on pre- and postsynaptic dopamine receptors were investigated in the rat brain as antagonism of the apomorphine-induced inhibition of the dopamine synthesis in the absence of nerve impulses and as blockade of the apomorphine-induced rotation following unilateral inactivation of the corpus striatum, respectively. Sulpiride was more potent in blocking post-than presynaptic dopamine receptors whereas the reverse was found for metoclopramide.

  2. 2.

    The synthesis and the utilization of dopamine was stimulated by sulpiride and metoclopramide and was inhibited by atropine, prazosin and aminooxyacetic acid. The inhibitory effects of the latter three drugs were counteracted by metoclopramide, but not by sulpiride. This difference can be explained by the preferential action of metoclopramide on presynaptic dopamine receptors.

  3. 3.

    Following unilateral inactivation of the corpus striatum, metoclopramide at a low dose, but not sulpiride turned the rats ipsilaterally, indicating that the release of dopamine was facilitated and that the presynaptic dopamine receptors are of physiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahtee, L.: Inhibition by apomorphine of the metoclopramide-induced catalepsy and increase in striatal homovanillic acid content. Br. J. Pharmacol.55, 381–385 (1975)

    Google Scholar 

  • Andén, N.-E.: Effects of reserpine and a tyrosine hydroxylase inhibitor on the monoamine levels in different regions of the rat central nervous system. Eur. J. Pharmacol.1, 1–5 (1967)

    Google Scholar 

  • Andén, N.-E.: Animal models of brain dopamine function. In: Advances in parkinsonism (W. Birkmayer, O. Hornykiewicz, eds.), pp. 169–177. Basle: Editiones Roche 1976

    Google Scholar 

  • Andén, N.-E., Grabowska, M.: Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur. J. Pharmacol.39, 275–282 (1976)

    Google Scholar 

  • Andén, N.-E., Grabowska-Andén, M.: Presynaptic and postsynaptic effects of dopamine receptor blocking agents. In: Advances in neurology, Vol. 24 (L. J. Poirier, T. L. Sourkes, P. J. Bédard, eds.), pp. 235–245. New York: Raven Press 1979

    Google Scholar 

  • Andén, N.-E., Stock, G.: Inhibitory effect of gammahydroxybutyric acid and gammaaminobutyric acid on the dopamine cells in the substantia nigra. Naunyn-Schmiedeberg's Arch. Pharmacol.279, 89–92 (1973)

    Google Scholar 

  • Andén, N.-E., Wachtel, H.: Increase in the turnover of brain dopamine by stimulation of muscarinic receptors outside the dopamine nerve terminals. J. Pharm. Pharmacol.29, 435–437 (1977)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Dahlström, A., Fuxe, K., Hökfelt, T.: Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. Life Sci.5, 561–568 (1966a)

    Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol. Toxicol. (Kbh.)24, 263–274 (1966b)

    Google Scholar 

  • Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol.19, 627–629 (1967)

    Google Scholar 

  • Atack, C. V.: The determination of dopamine by a modification of the dihydroxyindole fluorimetric assay. Br. J. Pharmacol.48, 699–714 (1973)

    Google Scholar 

  • Atack, C. V., Magnusson, T.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid-organic solvent mixtures. J. Pharm. Pharmacol.22, 625–627 (1970)

    Google Scholar 

  • Borenstein, P., Bles, G.: Effets cliniques et électroencéphalographiques du métoclopramide en psychiatrie. Thérapie20, 975–995 (1965)

    Google Scholar 

  • Borenstein, P., Champion, C., Cujo, Ph., Gekiers, P., Olivenstein, C., Kramarz, P.: Un psychotrope original: le sulpiride. Sem. Hôp. Paris19, 1301–1314 (1969)

    Google Scholar 

  • Bunney, B. S., Aghajanian, G. K.: The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res.117, 423–435 (1976)

    Google Scholar 

  • Bunney, B. S., Aghajanian, G. K., Roth, R. H.: Comparison of effects ofl-dopa, amphetamine and apomorphine on the firing rate of rat dopaminergic neurones. Nature New Biol.245, 123–125 (1973)

    Google Scholar 

  • Carlsson, A., Davis, J. N., Kehr, W., Lindqvist, M., Atack, C. V.: Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedeberg's Arch. Pharmacol.275, 153–168 (1972)

    Google Scholar 

  • Corrodi, H., Hanson, L. C. F.: Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacologia10, 116–125 (1966)

    Google Scholar 

  • Costall, B., Naylor, R. J.: Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine. Psychopharmacologia43, 69–74 (1975)

    Google Scholar 

  • Di Chiara, G., Porceddu, M. L., Vargiu, L., Argiolas, A., Gessa, G. L.: Evidence for dopamine receptors mediating sedation in the mouse brain. Nature264, 564–567 (1976)

    Google Scholar 

  • Dolphin, A., Jenner, P., Marsden, C. D., Pycock, C., Tarsy, D.: Pharmacological evidence for cerebral dopamine receptor blockade by metoclopramide in rodents. Psychopharmacologia41, 133–138 (1975)

    Google Scholar 

  • Elliott, P. N. C., Jenner, P., Marsden, C. D.: Atropine manipulation of elevated cerebral dopamine turnover caused by haloperidol or substituted benzamide drugs. J. Pharm. Pharmacol.30, 788–791 (1978)

    Google Scholar 

  • Feltz, P.: γ-Aminobutyric acid and a caudato-nigral inhibition. Can. J. Physiol. Pharmacol.49, 1113–1115 (1971)

    Google Scholar 

  • Grofová, I.: The identification of striatal and pallidal neurons projecting to substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase. Brain Res.91, 286–291 (1975)

    Google Scholar 

  • Häggendal, J.: An improved method for fluorimetric determination of small amounts of adrenaline and noradrenaline in plasma and tissues. Acta Physiol. Scand.59, 242–254 (1963)

    Google Scholar 

  • Hattori, T., McGeer, P. L., Fibiger, H. C., McGeer, E. G.: On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. Brain. Res.54, 103–114 (1973)

    Google Scholar 

  • Jenner, P., Marsden, C. D.: The substituted benzamides — a novel class of dopamine antagonists. Life Sci.25, 479–486 (1979)

    Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M.: A method for the determination of 3,4-dihydroxyphenylalamine (DOPA) in brain. Naunyn-Schmiedeberg's Arch. Pharmacol.274, 273–280 (1972b)

    Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol.24, 744–747 (1972a)

    Google Scholar 

  • Kim, J. S., Bak, I. J., Hassler, R., Okada, Y.: Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons. Exp. Brain. Res.14, 95–104 (1971)

    Google Scholar 

  • König, J. F. R., Klippel, R. A.: The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Baltimore: Williams and Wilkins 1963

    Google Scholar 

  • Niemegeers, C. J. E., Janssen, P. A. J.: A systematic study of the pharmacological activities of dopamine antagonists. Life Sci.24, 2201–2216 (1979)

    Google Scholar 

  • Precht, W., Yoshida, M.: Blockage of caudate-evoked inhibition of neurons in the subtantia nigra by picrotoxin. Brain Res.32, 229–233 (1971)

    Google Scholar 

  • Puech, A. J., Simon, P., Boissier, J. R.: Benzamides and classical neuroleptics: Comparison of their actions using 6 apomorphine-induced effects. Eur. J. Pharmacol.50, 291–300 (1978)

    Google Scholar 

  • Roth, R. H., Walters, J. R., Aghajanian, G. K.: Effect of impulse flow on the release and synthesis of dopamine in the rat striatum. In: Frontiers in catecholamine research (E. Usdin, S. H. Snyder, eds.), pp. 567–574. New York: Pergamon Press 1973

    Google Scholar 

  • Spector, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous norepinephrine synthesis by α-methyltyrosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol. Exp. Ther.147, 86–95 (1965)

    Google Scholar 

  • Stock, G., Magnusson, T., Andén, N.-E.: Increase in brain dopamine after axotomy or treatment with gammahydroxybutyric acid due to elimination of the nerve impulse flow. Naunyn-Schmiedeberg's Arch. Pharmacol.278, 347–361 (1973)

    Google Scholar 

  • Walters, J. R., Roth, R. H.: Dopaminergic neurons: An in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedeberg's Arch. Pharmacol.296, 5–14 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ålander, T., Andén, NE. & Grabowska-Andén, M. Metoclopramide and sulpiride as selective blocking agents of pre- and postsynaptic dopamine receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 312, 145–150 (1980). https://doi.org/10.1007/BF00569723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00569723

Key words

Navigation