Skip to main content
Log in

Structure, properties and production of β-alumina

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The crystal structures of the β-alumina compositions have been described and used to explain the fast ion transport for which these materials are renowned. Measured values of both the single crystal and polycrystalline ionic conductivity show a wide variation; this is explained in terms of the range of chemical compositions of the β-alumina system and also the variety of measuring techniques used. Dopants or impurity ions can have a significant effect on the physical properties of the β-aluminas. The ionic conductivity, the stability of the material and the densification during sintering have been considered in relation to the nature and level of a range of dopants described in the literature. The optimization of the ionic and mechanical properties has been achieved by development of the fabrication techniques and it is this which accounts for much of the present research. Thus the many different methods of producing both single and polycrystalline material have been described, including the range of sintering routes currently available. The advantages and disadvantages of each production route in terms of the resulting properties have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. J. Rand, J. Power Sources 4 (1979) 101.

    Google Scholar 

  2. N. Weber and J. T. Kummer, Advances in Energy Conversion Engineering ASME Conference, Florida, 1967, p.913.

  3. J. N. Anand, in Proc. Intersoc. Energy Conv. Conf. 14 (1979) 698.

    Google Scholar 

  4. H. Y-P. Hong, Mater. Res. Bull. 11 (1876) 173.

    Google Scholar 

  5. J. B. Goodenough, H. Y-P. Hong and J. A. Kafalas, ibid. 11 (1976) 203.

    Google Scholar 

  6. G. A. Rankin and H. E. Merwin, J. Amer. Chem. Soc. 38 (1916) 568.

    Google Scholar 

  7. C. W. Stillwell, J. Phys. Chem. 30 [11] (1926) 1441.

    Google Scholar 

  8. W. L. Bragg, C. Gottfried and J. West, Z. Krist. 77 [3–4] (1931) 255.

    Google Scholar 

  9. G. C. Farrington and J. L. Briant, Mater. Res. Bull. 13 (1978) 763.

    Google Scholar 

  10. R. Ridgway, A. Klein and W. O'Leary, Trans. Electrochem. Soc. 70 (1836) 71.

    Google Scholar 

  11. C. A. Beevers and S. Brohult, Z. Krist. 95 (1936) 472.

    Google Scholar 

  12. C. A. Beevers and M. A. S. Ross, ibid. 97 (1937) 59.

    Google Scholar 

  13. J. Felsche, ibid. 127 (1968) 94.

    Google Scholar 

  14. C. R. Peters, M. Bettman, J. W. Moore and M. D. Glick, Acta Crystall. B27 (1971) 1826.

    Google Scholar 

  15. Y. F. Yao and J. T. Kummer, J. Inorg. Nucl. Chem. 29 (1967) 2453.

    Google Scholar 

  16. W. L. Roth, F. Reidinger and S. La Placa, in “Superionic Conductors”, edited by G. D. Mahan and W. L. Roth (Plenum Press, New York, 1976) p. 223.

    Google Scholar 

  17. R. R. Dubin, H. S. Story, R. W. Powers and W. C. Bailey, Mater. Res. Bull. 14 (1979) 185.

    Google Scholar 

  18. M. W. Breiter and G. C. Farrington, ibid. 13 (1978) 1213.

    Google Scholar 

  19. G. Yamaguchi, Elect. Chem. Soc. Japan 11 (1943) 260.

    Google Scholar 

  20. J. Thery and D. Briancon, Comptes Rendus, hebd. Seanc. Acad. Sci. Paris 254 (1962) 2782.

    Google Scholar 

  21. Idem, Rev. Hautes Temper. Refract. 1 (1964) 221.

    Google Scholar 

  22. G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Japan 41 (1968) 93.

    Google Scholar 

  23. J. T. Kummer, Prog. Solid State Chem. 7 (1972) 141.

    Google Scholar 

  24. M. Bettman and L. L. Turner, Inorg. Chem. 10 (1971) 1442.

    Google Scholar 

  25. M. Rolin and P. H. Thanh, Rev. Hautes Temper. Refract. 2 (1965) 175.

    Google Scholar 

  26. R. C. De Vries and W. L. Roth, J. Amer. Ceram. Soc. 52 (1969) 364.

    Google Scholar 

  27. J. Liebertz, Ber-. Dt. Keram. Ges. 49 (1972) 288.

    Google Scholar 

  28. Y. Le Cars, J. Thery and R. Collongues, Rev. Hautes Temper. Refract. 9 (1972) 153.

    Google Scholar 

  29. Idem, Comptes Rendus. Acad. Sci. Paris. C274 (1972) 4.

    Google Scholar 

  30. J. D. Bevan, B. Hudson and P. T. Mosely, Mater. Res. Bull. 9 (1974) 1073.

    Google Scholar 

  31. I. Imai and M. Harata, Jpn. J. Appl. Phys. 11 (1972) 180.

    Google Scholar 

  32. N. Weber and A. F. Venero, in Proceedings of the 72nd Annual Meeting of The American Ceramic Society, Philadelphia, PA., May 1970, (Joint Session V No. 1-JV-70) [Ceram. Bull. 49 (1970) 498].

    Google Scholar 

  33. Research on Electrodes and Electrolyte for the Ford Sodium-Sulphur Battery; Report Contract No. NSF-C805 (a) July 1974, (b) January 1976.

  34. H. Saalfield, Naturwiss. 43 (1956) 420.

    Google Scholar 

  35. J. H. Kennedy, “Solid Electrolytes”, Topics in Applied Physics Vol. 21, edited by S. Geller (1977) Ch. 5.

  36. R. H. Radzilowski, Y. F. Yao and J. T. Kummer, J. Appl. Phys. 40 (1969) 4716.

    Google Scholar 

  37. B. J. Dunbar and S. Sarian, in Proceedings of the American Ceramic Society 28th Pacific Coast Regional and Nuclear Div. Meeting, October 29–31 (1975) 4-FC-75P.

  38. D. S. Demmott and P. Hancock, Proc. Brit. Ceram. Soc. 19 (1971) 193.

    Google Scholar 

  39. A. Hooper, J. Phys. D. Appl. Phys. 10 (1977) 1487.

    Google Scholar 

  40. M. S. Whittingham and R. A. Huggins, J. Chem. Phys. 54 (1971) 414.

    Google Scholar 

  41. R. M. Dell and P. T. Mosely, J. Power Sources 6 (1981) 143.

    Google Scholar 

  42. M. A. M. Bourke, A. Hooper, P. T. Mosely and R. G. Taylor, Solid State Ionics (Netherlands) 1 (1980) 367.

    Google Scholar 

  43. W. Hayes, L. Holden and B. C. Tofield, J. Phys. C (GB) 14 (1981) 511.

    Google Scholar 

  44. Y. Le Cars, R. Comes, L. Descharges and J. Thery, Acta Crystall. A30 (1974) 305.

    Google Scholar 

  45. Ph. Colomban and G. Lucazeau, J. Chem. Phys. 72 (1980) 1213.

    Google Scholar 

  46. M. S. Whittingham and R. A. Huggins, J. Electrochem. Soc. 118 (1971) 1.

    Google Scholar 

  47. W. Koch and C. Wagner, Z. Phys. Chem. B38 (1937) 295.

    Google Scholar 

  48. J. C. Wang, M. Gaffari and S. Choi, J. Chem. Phys. 63 (1975) 772.

    Google Scholar 

  49. W. L. Roth, J. Solid State Chem. 4 (1972) 60.

    Google Scholar 

  50. D. Wolf, J. Phys. Chem. Solids 40 (1979) 757.

    Google Scholar 

  51. D. B. M. Whan, P. D. Dernier, C. Vettier, A. S. Cooper and J. P. Remeika, Phys. Rev. B17 (1978) 4043.

    Google Scholar 

  52. K. K. Kim, J. N. Mundy and W. K. Chen, J. Phys. Chem. Solids 40 (1979) 757.

    Google Scholar 

  53. L. L. Chase, C. H. Hao and G. D. Mahan, Solid State Commun. 18 (1976) 401.

    Google Scholar 

  54. G. J. May, J. Power Sources 3 (1978) 1.

    Google Scholar 

  55. G. E. Youngblood, A. V. Virkar, W. R. Cannon and R. S. Gordon, Ceram. Bull. 56 (1977) 206.

    Google Scholar 

  56. G. E. Youngblood, G. R. Miller and R. S. Gordon, J. Amer. Ceram. Soc. 61 (1978) 86.

    Google Scholar 

  57. L. J. Miles and R. Stevens, private communication.

  58. T. J. Whalen, G. J. Tennenhouse and C. Meyer, J. Amer. Ceram. Soc. 57 (1974) 497.

    Google Scholar 

  59. A. V. Virkar, G. R. Miller and R. S. Gordon, ibid. 61 (1978) 250.

    Google Scholar 

  60. T. Ohta, M. Harata and A. Imai, Mater. Res. Bull. 11 (1976) 1343.

    Google Scholar 

  61. G. E. Youngblood and R. S. Gordon, Ceramurgia Int. 4 (1978) 93.

    Google Scholar 

  62. L. C. De Jonghe, J. Mater. Sci. 11 (1976) 206.

    Google Scholar 

  63. R. Stevens, ibid. 9 (1974) 801.

    Google Scholar 

  64. L. C. De Jonghe, ibid. 10 (1975) 2173.

    Google Scholar 

  65. Y. Le Cars, D. Gratias, R. Portier and J. Thery, J. Solid State Chem. 15 (1975) 218.

    Google Scholar 

  66. L. C. De Jonghe, J. Amer. Ceram. Soc. 62 [5–6] (1979) 289.

    Google Scholar 

  67. R. W. Powers and S. P. Mitoff, J. Electrochem. Soc. 122 (1975) 226.

    Google Scholar 

  68. J. H. Kennedy, in “Superionic Conductors”, edited by G. D. Mahan and W. L. Roth (Plenum Press, New York, 1976) p. 335.

    Google Scholar 

  69. J. H. Kennedy and A. F. Sammells, J. Electrochem. Soc. 119 (1972) 1609.

    Google Scholar 

  70. J. H. Kennedy and J. R. Akridge, Electrochem. Soc. Meeting Paper 84, Washington D.C. May 2–7 1976.

  71. J. P. Boilot and J. Thery, Mater. Res. Bull. 11 (1976) 407.

    Google Scholar 

  72. W. G. Bugden and J. H. Duncan, Sci. Ceram. 9 (1977) 348.

    Google Scholar 

  73. R. H. Radzilowski, J. Amer. Ceram. Soc. 53 (1970) 699.

    Google Scholar 

  74. B. C. Tofield and G. C. Farrington, Nature (London) 278 (1979) 438.

    Google Scholar 

  75. R. J. Charles, S. P. Mitoff and W. G. Morris, U.S. Patent No. 3,607,435, Sept. 21, 1971.

  76. W. L. Roth, Chung Intaik and H. S. Story, J. Amer. Ceram. Soc. 60 (1977) 311.

    Google Scholar 

  77. K. Nishimura, M. Hasegawa and M. Tahagi, Japanese Patent No. 73-43, 646, Dec. 20 1973.

  78. G. J. May, J. Mater. Sci. 14 (1979) 1502.

    Google Scholar 

  79. A. C. Buechele and L. C. De Jonghe, Ceram. Bull. 58 (1979) 861.

    Google Scholar 

  80. I. Wynn Jones and L. J. Miles, Proc. Brit. Ceram. Soc. 19 (1971) 161.

    Google Scholar 

  81. J. T. Kummer and N. Weber, U.S. Patent No. 3,404,036, Oct. 1, 1968.

  82. M. Y. Hsieh and L. C. De Jonghe, J. Amer. Ceram. Soc. 61 (1976) 185.

    Google Scholar 

  83. F. H. Cocks and R. W. Stormont, J. Electrochem. Soc. 121 (1974) 596.

    Google Scholar 

  84. H. E. La Belle, Jr and A. I. Mlausky, Mater. Res. Bull 6 (1971) 571.

    Google Scholar 

  85. B. Chalmers, H. E. La Belle Jr and A. I. Mlausky, ibid. 6 (1971) 681.

    Google Scholar 

  86. H. E. La Belle Jr, ibid. 6 (1971) 581.

    Google Scholar 

  87. N. Weber and A. F. Venero, Proceedings of the 72nd Annual Meeting of The American Ceramic Society Philadelphia PA. May 5 1970 (Joint Session I No. 5-JI-70).

  88. M. Harata, Mater. Res. Bull. 6 (1971) 461.

    Google Scholar 

  89. A. D. Morrison, R. W. Stormont and F. H. Cocks, J. Amer. Ceram. Soc. 58 (1975) 41.

    Google Scholar 

  90. D. W. Johnson, Jr, S. M. Granstaff, Jr and W. W. Rhodes, Ceram. Bull. 58 (1979) 849.

    Google Scholar 

  91. E. M. Vogel, J. W. Johnson, Jr and M. F. Yan, ibid. 60 (1981) 494.

    Google Scholar 

  92. M. L. Miller, B. J. Mcentire, G. R. Miller and R. S. Gordon, ibid. 58 (1979) 522.

    Google Scholar 

  93. Ford Motor Company, U.K. Patent No. 1,541,850 (1979).

  94. W. Bychalo, G. Rosenblatt, J. Lam and P. S. Nicholson, Ceram. Bull. 55 (1976) 286.

    Google Scholar 

  95. M. Rivier and A. D. Pelton, ibid. 57 (1978) 183.

    Google Scholar 

  96. A. W. Powers, J. Electrochem Soc. 122 (1975) 490.

    Google Scholar 

  97. J. H. Kennedy and A. Foissy, ibid. 122 (1975) 482.

    Google Scholar 

  98. Idem, J. Amer. Ceram. Soc. 60 (1977) 33.

    Google Scholar 

  99. R. W. Powers and S. P. Mitoff, Ceram. Bull. 56 (1977) 456.

    Google Scholar 

  100. L. C. De Jonghe and H. Chandon, ibid. 55 (1976) 312.

    Google Scholar 

  101. A. V. Virkar, G. J. Tennenhouse and R. S. Gordon, J. Amer. Ceram. Soc. 57 (1974) 508.

    Google Scholar 

  102. A. V. Virkar, T. D. Ketcham and R. S. Gordon, Ceramurgia Int. 5 (1979) 66.

    Google Scholar 

  103. W. J. Mcdonough, D. R. Flinn, K. H. Stern and R. W. Rice, J. Mater. Sci. 13 (1978) 2403.

    Google Scholar 

  104. D. Hind and E. W. Roberts, Trans. J. Brit. Ceram. Soc. 80 (1981) 219.

    Google Scholar 

  105. D. L. Johnson and R. A. Rizzo, Ceram. Bull. 59 (1980) 467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, R., Binner, J.G.P. Structure, properties and production of β-alumina. J Mater Sci 19, 695–715 (1984). https://doi.org/10.1007/BF00540440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540440

Keywords

Navigation