Skip to main content
Log in

Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The deficiencies of common ab initio methods for the reliable prediction of the equilibrium structures of compounds composed of only the fluorine, oxygen and nitrogen atoms are investigated. Specifically, the importance of using large one-particle basis sets with multiple sets of polarization functions has been studied. Additionally, the need for a set of f basis functions was investigated. Several different single reference electron correlation methods have been tested in order to determine whether it is possible for a single reference based method to be routinely used on such chemical systems. These electron correlation methods include second order Møller-Plesset perturbation theory (MP2), singles and doubles configuration interaction (CISD), the coupled pair functional (CPF) approach and singles and doubles coupled cluster (CCSD) theory. The molecular systems studied include difluoroperoxide (FOOF), the cis form of the NO dimer, cis and trans difluorodiazene (FNNF) and the transition state to interconversion of the cis and trans isomers of FNNF. To the best of our knowledge, this is the first time that the cis-trans isomerization transition state has been reported. At the highest level of theory employed, the equilibrium structures of cis and trans FNNF agree very well with the experimental structures. However, the barrier to interconversion is predicted to be 65 kcal/mole, which is substantially higher than the experimental activation energy of 32 kcal/mole. Potential sources of error are discussed. A new diagnostic method for determining a priori the reliability of single reference based electron correlation methods is suggested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reisenauer HP, Maier G, Riemann A, Hoffmann RW (1984) Angew Chem Int Ed Eng 23:641

    Google Scholar 

  2. Lee TJ, Bunge A, Schaefer HF (1985) J Am Chem Soc 107:137

    Google Scholar 

  3. Kawaguchi K, Hirota E (1987) J Chem Phys 87:6838

    Google Scholar 

  4. Janssen CL, Allen WD, Schaefer HF, Bowman JM (1986) Chem Phys Lett 131:352

    Google Scholar 

  5. Yamashita K, Morokuma K, quoted in [3]

  6. Botschwina P, quoted in [3]

  7. Newton MD, Latham WA, Hehre WJ, Pople JA (1970) J. Chem Phys 52:4064

    Google Scholar 

  8. Kuczkowski R, Wilson EB (1963) J Chem Phys 39:1030

    Google Scholar 

  9. Jackson RH (1962) J Chem Soc 4585

  10. Radom L, Latham WA, Hehre WJ, Pople JA (1971) J Am Chem Soc 93:5339

    Google Scholar 

  11. Lucchese RR, Schaefer HF, Rodwell WD, Radom LR (1978) J Chem Phys 68:2507

    Google Scholar 

  12. Ahlrichs R, Taylor PR (1982) Chem Phys 72:287

    Google Scholar 

  13. Clabo DA, Schaefer HF (1987) Int J Quantum Chem 31:429

    Google Scholar 

  14. Rohlfing CM, Hay PJ (1987) 86:4518

  15. Mack HG, Oberhammer H (1988) Chem Phys Lett 145:121

    Google Scholar 

  16. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  17. Ahlrichs R (1979) Phys Commun 17:31

    Google Scholar 

  18. Guillory WA, Hunter CE (1969) J Chem Phys 50:3516

    Google Scholar 

  19. Lipscomb WN, Wang FE, May WR, Lippert EL (1961) Acta Crystallogr 14:1100

    Google Scholar 

  20. Dinerman CE, Ewing GE (1970 J Chem Phys 53:626

    Google Scholar 

  21. Weston CM, Langridge-Smith PRR, Howard BJ, Novik SE (1981) Mol Phys 44:145

    Google Scholar 

  22. Skaagrup S, Skancke PN, Boggs JE (1976) J Am Chem Soc 98:6106

    Google Scholar 

  23. Benzel MA, Dykstra CE, Vincent MA (1981) Chem Phys Lett 78:139

    Google Scholar 

  24. Craig NC, Piper LG, Wheller VL (1971) J Phys Chem 75:1453

    Google Scholar 

  25. Bonn RK, Bauer SH (1967) Inorg Chem 6:309

    Google Scholar 

  26. Straume K, Skancke A (1980) Chem Phys Lett 73:378

    Google Scholar 

  27. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  28. Jankowski K, Becherer R, Scharf P, Schiffer H, Ahrlichs R (1985) J Chem Phys 82:1413

    Google Scholar 

  29. Dunning TH (1970) J Chem Phys 53:2823

    Google Scholar 

  30. Huzinaga S (1965) J Chem Phys 42:1293

    Google Scholar 

  31. Dunning TH (1971) J Chem Phys 55:716

    Google Scholar 

  32. van Duijneveldt FB (1971) IBM Research Report RJ945

  33. Lee TJ, Schaefer HF (1985) J Chem Phys 83:1784

    Google Scholar 

  34. Weast RC, Astle MJ, Beyer WH (1987–1988) CRC handbook of chemistry and physics, 68th edn. CRC Press Boca Raton, Florida pp F159-F179

    Google Scholar 

  35. Karplus M, Porter RN (1970) Atoms and molecules. WA Benjamin

  36. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Google Scholar 

  37. Okumura M, Yeh LI, Normand D, van den Biesen JJH, Bustamente SW, Lee YT, Lee TJ, Handy NC, Schaefer HF (1987) J Chem Phys 86:3807

    Google Scholar 

  38. Ahlrichs R, Scharf P, Erhardt C (1985) J Chem Phys 82:890

    Google Scholar 

  39. Amos RD, Rice JE (1987) CADPAC: Cambridge Analytic Derivatives Package, Issue 4, Cambridge

  40. Saxe P, Fox DJ, Schaefer HF, Handy NC (1982) J Chem Phys 77:5584

    Google Scholar 

  41. Rice JE, Amos RD, Handy NC, Lee TJ, Schaefer HF (1986) J Chem Phys 85:963

    Google Scholar 

  42. Scuseria GE, Scheiner AC, Lee TJ, Rice JE, Schaefer HF (1987) J Chem Phys 86:2881

    Google Scholar 

  43. Scheiner AC, Scuseria GE, Rice JE, Lee TJ, Schaefer HF (1987) J Chem Phys 87:5361

    Google Scholar 

  44. Lee TJ, Rice JE (in press) Chem Phys Lett

  45. Rice JE, Lee TJ, Handy NC (1988) J Chem Phys 88:7011

    Google Scholar 

  46. Scuseria GE, Schaefer HF (1987) Chem Phys Lett 142:354

    Google Scholar 

  47. Binenboym J, Burcat A, Lifshitz A, Shamir J (1966) J Am Chem Soc 88:5039

    Google Scholar 

  48. Simandiras ED, Handy NC, Amos RD (1987) Chem Phys Lett 133:324

    Google Scholar 

  49. Simandiras ED, Rice JE, Lee TJ, Amos RD, Handy NC (1988) J Chem Phys 88:3187

    Google Scholar 

  50. Handy NC, Gaw JF, Simandiras ED (1987) J Chem Soc Faraday Trans 2 83:1577

    Google Scholar 

  51. Laidig WD, Purvis GD, Bartlett RJ (1982) J Quantum Chem Symp 16:561

    Google Scholar 

  52. Laidig WD, Purvis GD, Bartlett RJ (1983) Chem Phys Lett 97209

  53. Almløf J, Taylor PR (1987) J Chem Phys 86:4070

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution CCQC No. 36

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.J., Rice, J.E., Scuseria, G.E. et al. Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization. Theoret. Chim. Acta 75, 81–98 (1989). https://doi.org/10.1007/BF00527711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527711

Key words

Navigation