Skip to main content
Log in

Relaxation of hormonally stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Substances that cause contraction or relaxation of smooth muscle have been shown to increase intracellular levels of cyclic GMP. Because of the unclear role of cyclic GMP in the control of smooth muscle tone, cyclic GMP derivatives were exogenously applied to various smooth muscle preparations and their effects on tissue tone were studied.

Whereas the basal tone of the rat ductus deferens was not affected by exogenous cyclic GMP or its dibutyryl or 8-bromo derivatives, the contractile responses of this tissue to noradrenaline and acetylcholine were depressed by preincubation with 10 μM 8-bromo cyclic GMP (Br-cGMP). The 8-bromo derivatives of 2′:3′-cyclic GMP, 5′-GMP and guanosine were without effects. Cyclic AMP levels were not changed by Br-cGMP. The frequency of oxytocin-stimulated rat uteri was also depressed by Br-cGMP (10 μM). In helical strips of rat and rabbit aortae, Br-cGMP (1–100 μM) caused a concentration-dependent, rapid decrease in noradrenaline-stimulated tissue tension. Br-2′:3′-cyclic GMP was ineffective. Noradrenaline-stimulated strips from hog spleen arteries were less sensitive to Br-cGMP than aortic tissue. In ductus deferentes and aortic strips stimulated by K+ at a depolarizing concentration, Br-cGMP caused less relaxation than under hormonal stimulation.

These findings support the concept that cyclic GMP is involved in the control of smooth muscle tone and that hormone- and drug-induced elevations of the cyclic GMP level can reduce contractile responses to neurotransmitters and hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cGMP:

Guanosine 3′:5′-monophosphate, cyclic GMP

dibutyryl cGMP:

N2, 2′-O-dibutyryl guanosine 3′:5′-monophosphate

Br-cGMP:

8-bromo guanosine 3′:5′-monophosphate

Br-2′:3′-cGMP:

8-bromo guanosine 2′:3′-monophosphate

Br-GMP:

8-bromo guanosine 5′-monophosphate

Br-Guo:

8-bromo guanosine, Br-guanosine

cAMP:

adenosine 3′:5′-monophosphate, cyclic AMP

dibutyryl cAMP:

N6, 2′-O-dibutyryl adenosine 3′:5′-monophosphate

Br-cAMP:

8-bromo adenosine 3′:5′-monophosphate

References

  • Andersson, R., Nilsson, K., Wikberg, J., Johansson, S., Mohme-Lundholm, E., Lundholm, L.: Cyclic nucleotides and the contraction of smooth muscle. Adv. Cycl. Nucl. Res. 5, 491–518 (1975)

    Google Scholar 

  • Arnold, W. P., Mittal, C. K., Katsuki, S., Murad, F.: Nitric oxid activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparation. Proc. Natl. Acad. Sci. U.S.A. 74, 3203–3207 (1977)

    Google Scholar 

  • Bär, H.-P.: Cyclic nucleotides and smooth muscle. Adv. Cycl. Nucl. Res. 4, 195–237 (1974)

    Google Scholar 

  • Baudoin-Legros, M., Meyer, P.: Effects of angiotensin, catecholamines and cyclic AMP on calcium storage in aortic microsomes. Brit. J. Pharmacol. 47, 377–385 (1973)

    Google Scholar 

  • Berridge, M. J., Lipke, H.: Changes in calcium transport across Calliphora salivary glands induced by 5-hydroxytryptamine and cyclic nucleotides. J. Exp. Biol. in press (1978)

  • Bhalla, R. C., Webb, R. C., Singh, D., Brock, T.: Role of cyclic AMP in aortic microsomal phosphorylation and calcium uptake. Amer. J. Physiol. 234, H 508–514 (1978)

    Google Scholar 

  • Böhme, E., Graf, H., Schultz, G.: Effects of sodium nitroprusside and other smooth muscle relaxants on cyclic GMP formation in smooth muscle and platelets. Adv. Cycl. Nucl. Res. 9, 131–143 (1978)

    Google Scholar 

  • Casnellie, J. E., Greengard, P.: Guanosine 3′:5′-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 71, 1891–1895 (1974)

    Google Scholar 

  • Chantot, J.-F., Guschlbauer, W.: Physiochemical properties of nucleotides. FEBS Letters 4, 173–176 (1969)

    Google Scholar 

  • Diamond, J.: Role of cyclic nucleotides in control of smooth muscle contraction. Adv. Cycl. Nucl. Res. 9, 327–340 (1978)

    Google Scholar 

  • Diamond, J., Blisard, K. S.: Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery. Molec. Pharmacol. 12, 688–692 (1976)

    Google Scholar 

  • Diamond, J., Holmes, T. G.: Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium. Canad. J. Physiol. Pharmacol. 53, 1099–1107 (1975)

    Google Scholar 

  • Dunham, E. W., Haddox, M. K., Goldberg, N. D.: Alteration of vein cyclic 3′:5′ nucleotide concentrations during change of contractility. Proc. Natl. Acad. Sci. U.S.A. 71, 815–819 (1974)

    Google Scholar 

  • Fermum, R., Klinner, U., Meisel, P.: Versuche zum Wirkungsmechanismus von Gefäßspasmolytika. I. Wirkung von Nitroprussid-Natrium, Nitroglycerin, Prenylamin und Verapamil an der arretierten Kalium-induzierten Kontraktur isolierter Koronararterien. Acta Biol. Med. Germ. 35, 1347–1358 (1976)

    Google Scholar 

  • Fitzpatrick, D. F., Szentivanyi, A.: Stimulation of calcium uptake into aortic microsomes by cyclic AMP and cyclic AMP-dependent protein kinase. Naunyn-Schmiedeberg's Arch. Pharmacol. 298, 255–257 (1977)

    Google Scholar 

  • Fleckenstein, A., Grün, G., Tritthart, H., Byon, K., Harding, P.: Uterus-Relaxation durch hochaktive Ca2+-antagonistische Hemmstoffe der elektro-meachnischen Koppelung wie Isoptin (Verapamil, Iproveratril), Substanz D 600 und Segontin (Prenylamin). Klin. Wschr. 49, 32–41 (1971)

    Google Scholar 

  • Goldberg, N. D., Haddox, M. K.: Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem. 46, 823–896 (1977)

    Google Scholar 

  • Häusler, G., Thorens, S.: The pharmacology of vasoactive antihypertensives. In: Vascular neuroeffector mechanisms, J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, O. A. Nedergard (eds.), pp. 232–241. Basel: Karger 1976

    Google Scholar 

  • Heersche, J. N. M., Ferak, S. A., Aurbach, J. D.: The mode of action of dibutyryl adenosine 3′,5′-monophosphate in bone tissue in vitro. J. Biol. Chem. 246, 6770–6775 (1971)

    Google Scholar 

  • Hurwitz, L., Suria, A.: The link between agonist and action and response in smooth muscle. Ann. Rev. Pharmacol. 11, 303–326 (1971)

    Google Scholar 

  • Katsuki, S., Murad, F.: Regulation of adenosine cyclic 3′:5′-monophosphate and guanosine cyclic 3′:5′-monophosphate levels and contractility in bovine tracheal smooth muscle. Molec. Pharmacol. 13, 330–341 (1977).

    Google Scholar 

  • Kreye, V. A. W., Lüth, J. B.: Effect of sodium nitroprusside, temperature, and calcium withdrawal on the relaxation speed of vascular smooth muscle. In: Ionic actions on vascular smooth muscle (E. Betz, ed.), pp. 145–149. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  • Kreye, V. A. W., Schultz, G.: Inhibition of norepinephrine-, angiotensin II-, and vasopressin-induced contractions of smooth muscle by acyl derivatives of adenosine-3′:5′-monophosphate. Europ. J. Pharmacol. 18, 297–302 (1972)

    Google Scholar 

  • Kreye, V. A. W., Baron, G. D., Lüth, J. B., Schmidt-Gayk, H.: Mode of action of sodium nitroprusside on vascular smooth muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 288, 381–402 (1975)

    Google Scholar 

  • Kreye, V. A. W., Kern, R., Schleich, I.: 36Chloride efflux from noradrenaline-stimulated rabbit aorta inhibited by sodium nitroprusside and nitroglycerine. In: Excitation-contraction coupling in smooth muscle, R. Casteels, T. Godfraind, J. C. Rüegg (eds.), pp. 145–150. Amsterdam-New York: Elsevier/North Holland 1977

    Google Scholar 

  • Kuo, J. F., Shoji, M., Kuo, W. N.: Molecular and physiopathologic aspects of mammalian cyclic GMP-dependent protein kinase. Ann. Rev. Pharmacol. 18, 341–355 (1978)

    Google Scholar 

  • Lee, T.-P., Kuo, J. F., Greengard, P.: Role of muscarinic cholinergic receptors in the regulation of guanosine 3′:5′-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 69, 3287–3291 (1972)

    Google Scholar 

  • Lewis, A. J., Douglas, J. S., Bouhuys, A.: Biphasic responses to guanosyl nucleotides in two smooth muscle preparations. J. Pharm. Pharmacol. 25, 1011–1013 (1973)

    Google Scholar 

  • Lincoln, T. M., Corbin, J. D.: On the role of the cAMP and cGMP-dependent protein kinases in cell function. J. Cycl. Nucl. Res. 4, 3–14 (1978)

    Google Scholar 

  • Michal, G., Mühlegger, K., Nelboeck, N., Thiessen, C., Weimann, G.: Cyclophosphates. VI. Cyclophosphates as substrates and effectors of phosphodiesterase. Pharmacol. Res. Comm. 6, 203–252 (1974)

    Google Scholar 

  • Nilsson, K. B., Andersson, R. G. G.: Effects of carbachol and calcium on the cyclic guanosine-3′:5′-monophosphate (cyclic GMP) metabolism in intestinal smooth muscle. Acta Physiol. Scand. 99, 246–253 (1977)

    Google Scholar 

  • Nishikori, K., Takenaka, T., Maeno, H.: Stimulation of microsomal calcium uptake and protein phosphorylation by adenosine cyclic 3′:5′-monophosphate in rat uterus. Molec. Pharmacol. 13, 671–678 (1977)

    Google Scholar 

  • Puglisi, L., Berti, F., Paoletti, R.: Antagonism of dibutyryl Guo-3′:5′-P and atropine on stomach muscle contraction. Experientia 27, 1187–1188 (1971)

    Google Scholar 

  • Robison, G. A., Butcher, R. W., Sutherland, E. W.: Cyclic AMP. New York-London: Academic Press 1971

    Google Scholar 

  • Schultz, G.: Possible interrelations between calcium and cyclic nucleotides in smooth muscle. In: Asthma II. Physiology, immuno-pharmacology and treatment (L. M. Lichtenstein, K. F. Austen, eds.), pp. 77–89. New York-San Francisco-London: Academic Press 1977a

    Google Scholar 

  • Schultz, G.: The role of cyclic GMP in the actions of hormones and drugs affecting smooth muscle tone. In: Hormones and cell regulation. Vol. 2. J. Dumont, J. Numez (eds.), pp. 107–117. Amsterdam-New York: Elsevier/North Holland 1978

    Google Scholar 

  • Schultz, G., Hardman, J. G.: Possible roles of cyclic nucleotides in the regulation of smooth muscle tonus. In: Eukaryotic cell functions and growth, regulation by intracellular cyclic nucleotides. J. E. Dumont, B. L. Brown, N. J. Marshall (eds.), pp. 667–683. New York-London: Plenum Press 1976

    Google Scholar 

  • Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E., Sutherland, E. W.: The importance of calcium ions for the regulation of guanosine-3′:5′-monophosphate levels. Proc. Natl. Acad. Sci. U.S.A. 70, 3889–3893 (1973a)

    Google Scholar 

  • Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W., Sutherland, E. W.: A new enzymatic assay for guanosine 3′:5′-cyclic monophosphate and its application to the ductus deferens of the rat. Proc. Nat. Acad. Sci. U.S.A. 70, 1721–1725 (1973b)

    Google Scholar 

  • Schultz, G., Schultz, K., Hardman, J. G.: Effects of norepinephrine on cyclic nucleotide levels in the ductus deferens of the rat. Metabolism 24, 429–437 (1975)

    Google Scholar 

  • Schultz, K. D.: Effects of 8-Br-cGMP on the tonus of rat ductus deferens and aorta. Naunyn-Schmiedeberg's Arch. Pharmacol. 297, Suppl. II, R 12 (1977b)

    Google Scholar 

  • Schultz, K. D., Schultz, K., Schultz, G.: Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265, 750–751 (1977)

    Google Scholar 

  • Schultz, G., Schultz, K. D., Böhme, E., Kreye, V. A. W.: The possible role of cyclic GMP in the actions of hormones and drugs on smooth muscle tone: Effects of exogenous cyclic GMP derivatives. Proc. 7th Intern. Congr. Pharmacol. Paris 1978, New York-London: Pergamon Press (in press)

  • Somlyo, A. P., Somlyo, A. V.: Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol. Rev. 22, 249–252 (1970)

    Google Scholar 

  • Szaduykis-Szadurski, L., Berti, F.: Smooth muscle relaxing activity of 8-bromo-guanosine-3′:5′-monophosphate. Pharmacol. Res. Commun. 4, 53–61 (1972a)

    Google Scholar 

  • Szaduykis-Szadurski, L., Weimann, G., Berti, F.: Pharmacological effects of cyclic nucleotides and their derivatives on tracheal smooth muscle. Pharmacol. Res. Comm. 4, 63–69 (1972b)

    Google Scholar 

  • Takayanagi, I., Takagi, K.: The action of dibutyryl cyclic GMP (N2-2-O-dibutyryl cyclic guanosine-3′,5′-monophosphate) on the ileum of guinea pig. Jap. J. Pharmacol. 23, 573–575 (1973)

    Google Scholar 

  • Wallach, D., Davies, P. J. A., Pastan, I.: Cyclic AMP-dependent phosphorylation of filamin in mammalian smooth muscle. J. Biol. Chem. 253, 4739–4745 (1978)

    Google Scholar 

  • Wikberg, J. E. S., Andersson, R. G. G.: A promoting action of cyclic GMP on contractions of guinea vas deferens. Experientia 34, 737–739 (1978)

    Google Scholar 

  • Zsotér, T. T., Henein, N. F., Wolinsky, C.: The effect of sodium nitroprusside on the uptake and efflux of 45Ca from rabbit and rat vessels. Europ. J. Pharmacol. 45, 7–12 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Deutsche Forschungsgemeinschaft. Preliminary reports were presented (Schultz, 1977b; Schultz et al., 1978).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, KD., Böhme, E., Kreye, V.A.W. et al. Relaxation of hormonally stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP. Naunyn-Schmiedeberg's Arch. Pharmacol. 306, 1–9 (1979). https://doi.org/10.1007/BF00515586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00515586

Key words

Navigation