Skip to main content
Log in

The effects of adrenaline and theophylline on action potential and contraction of mammalian ventricular muscle under “rested-state” and “steady-state” stimulation

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

In this study simultaneous measurements of action potentials and force of contraction of isolated ventricular muscle from cat and calf hearts were performed under stimulated steady-state and rested-state conditions. It is shown that time-to-peak force of the rested-state contraction correlates well with electrically induced changes in the duration of the platcau phase of the corresponding action potential. Moreover, adrenaline (0.2 and 0.6 μM) and theophylline (2 and 5 mM) increase the amplitude of the rested-state and stimulated steady-state contractions. The concentrations of these drugs were about equi-effective in increasing stimulated steady-state force of contraction. However, the effect of adrenaline on the rested-state contraction is small in comparison to that of theophylline. The effect of both drugs on the rested-state contraction is accompanied by an increase in the plateau amplitude of the corresponding action potential. Since the plateau phase of the cardiac action potential is maintained by the slow inward current mainly carried by Ca ions and since adrenaline and methylxanthines increase this current, it is concluded from the present study that the rested-state contraction may be regulated primarily by Ca ions flowing into the cell during the action potential, while the stimulated steady-state contraction seems to be determined by the amount of Ca ions released from the sarcoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, D. G., Jewell, B. R., Wood, E. H.: The rested state contraction and action potential of cat papillary muscle. J. Physiol. (Lond.) 238, 29P-30P (1974)

    Google Scholar 

  • Allen, D. G., Jewell, B. R., Wood, E. H.: Studies of the contractility of mammalian myocardium at low rates of stimulation. J. Physiol. (Lond.) 254, 1–18 (1976)

    Google Scholar 

  • Bassingthwaighte, J. B., Reuter, H.: Calcium movements and excitation-contraction coupling in cardiac cells. In: Electrical phenomena in the heart, (W. C. De Mello, ed.). New York-London: Academic Press 1972

    Google Scholar 

  • Batra, S.: The effects of drugs on calcium uptake and calcium release by mitochondria and sarcoplasmic reticulum of frog skeletal muscle. Biochem. Pharmacol. 23, 89–101 (1974)

    Google Scholar 

  • Blinks, J. R., Olson, C. B., Jewell, B. R., Braveny, P.: Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Circ. Res. 30, 367–392 (1972)

    Google Scholar 

  • Clark, A., Olson, C. B.: Effects of caffeine and isoprenaline on mammalian ventricular muscle. Br. J. Pharmacol. 47, 1–11 (1973)

    Google Scholar 

  • Edman, K. A. P., Johannsson, M.: The contractile state of rabbit papillary muscle in relation to stimulation frequency. J. Physiol. (Lond.) 254, 565–581 (1976)

    Google Scholar 

  • England, P.: Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS Lett. 50, 57–60 (1975)

    Google Scholar 

  • Fabiato, A., Fabiato, F.: Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells. Nature 253, 556–558 (1975)

    Google Scholar 

  • Henderson, A. H., Brutsaert, D. L., Forman, R., Sonnenblick, E. H.: Influence of caffeine on force development and force-frequency relations in cat and rat heart muscle. Cardiovasc. Res. 8, 162–172 (1974)

    Google Scholar 

  • Johnson, P. N., Inesi, G.: The effect of methylxanthines and local anesthetics on fragmented sarcoplasmic reticulum. J. Pharmacol. Exp. Ther. 169, 308–314 (1969)

    Google Scholar 

  • Jundt, H., Porzig, H., Reuter, H., Stucki, J. W.: The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles. J. Physiol. (Lond.) 246, 229–253 (1975)

    Google Scholar 

  • Katz, A. M., Tada, M., Kirchberger, M. A.: Control of calcium transport in the myocardium by cyclic AMP-protein kinase system. Adv. Cycl. Nucleot. Res., vol. 5 (G. L. Drummond, P. Greengard, and G. A. Robinson, eds.), New York: Raven Press 1975

    Google Scholar 

  • Koch-Weser, J., Blinks, J. R.: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15, 601–652 (1963)

    Google Scholar 

  • Kohlhardt, M., Kübler, M., Hansi, E.: Ambiguous effect of caffeine upon the transmembrane Ca current in mammalian ventricular myocardium. Experientia 30, 254–255 (1974)

    Google Scholar 

  • Langer, G. A.: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev. 48, 708–757 (1968)

    Google Scholar 

  • Morad, M., Goldman, Y.: Excitation-contraction coupling in heart muscle: membrane control of development of tension. Prog. Biophys. Mol. Biol. 27, 257–313 (1973)

    Google Scholar 

  • Morad, M., Rolett, E. L.: Relaxing effects of catecholamines on mammalian heart. J. Physiol. (Lond.) 224, 537–558 (1972)

    Google Scholar 

  • Morad, M., Trautwein, W.: The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflügers Arch. 299, 66–82 (1968)

    Google Scholar 

  • Niedergerke, R., Ogden, D. C., Page, S.: Contractile activation and calcium movements in heart cells. In: Calcium in biological systems. Society for Experimental Biology, Symposium Nr. 30, Cambridge: University Press 1976

    Google Scholar 

  • Parmley, W. W., Sonnenblick, E. H.: Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am. J. Physiol. 216, 1084–1091 (1969)

    Google Scholar 

  • Reuter, H.: Über die Wirkung von Adrenalin auf den zellulären Ca-Umsatz des Meerschweinchenvorhofs. Naunyn-Schmiedeberg's Arch. Exp. Path. Pharmak. 251, 401–412 (1965)

    Google Scholar 

  • Reuter, H.: Divalent cations as charge carriers in excitable membranes. Prog. Biophys. Mol. Biol. 26, 1–43 (1973a)

    Google Scholar 

  • Reuter, H.: Time- and voltage-dependent contractile responses in mammalian cardiac muscle. Eur. J. Cardiol. 1, 177–181 (1973b)

    Google Scholar 

  • Reuter, H.: Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. (Lond.) 242, 429–452 (1974)

    Google Scholar 

  • Reuter, H., Scholz, H.: Über den Einfluß der extrazellulären Ca-Konzentration auf Membranpotential und Kontraktion isolierter Herzpräparate bei graduierter Depolarisation. Pflügers Arch. 300, 87–107 (1968)

    Google Scholar 

  • Reuter, H., Scholz, H.: The regulation of the calcium conductance of cardiac muscle by adrenaline. J. Physiol. (Lond.) 264, 49–62 (1977)

    Google Scholar 

  • Rubio, R., Bailey, C., Villar-Palasi, C.: Effects of cyclic AMP dependent protein kinase on cardiac actomyosin: increase in Ca2+ sensitivity and possible phosphorylation of troponin I. J. Cycl. Nucleot. Res. 1, 143–150 (1975)

    Google Scholar 

  • Scholz, H.: Über den Mechanismus der positiv inotropen Wirkung von Theophyllin am Warmblüterherzen. Naunyn-Schmiedeberg's Arch. Pharmak. 271, 410–429 (1971)

    Google Scholar 

  • Scholz, H., Reuter, H.: Effect of theophylline on membrane currents in mammalian cardiac muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 293, R19 (1976)

    Google Scholar 

  • Seibel, K., Karema, E., Takeya, K., Reiter, M.: Two components of heart muscle contraction under the influence of noradrenaline. Naunyn-Schmiedeberg's Arch. Pharmacol. 294, R19 (1976)

    Google Scholar 

  • Solaro, R. J., Moir, A. J. G., Perry, S. V.: Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262, 615–616 (1976)

    Google Scholar 

  • Solaro, R. J., Wise, R. M., Shiner, J. S., Briggs, N. F.: Calcium requirements for cardiac myofibrillar activation. Circ. Res. 34, 525–530 (1974)

    Google Scholar 

  • Šimurda, J., Šimurdova, M., Bravený, P., Šumbera, J.: Slow inward current and action potentials of papillary muscle under non-steady state conditions. Pflügers Arch. 362, 209–218 (1976)

    Google Scholar 

  • Thorpe, W. R.: Some effects of caffeine and quinidine on sarcoplasmic reticulum of skeletal and cardiac muscle. Can. J. Physiol. Pharmacol. 51, 499–503 (1973)

    Google Scholar 

  • Trautwein, W.: Membrane currents in cardiac muscle fibers. Physiol. Rev. 53, 793–835 (1973)

    Google Scholar 

  • Tsien, R. W., Giles, W., Greengard, P.: Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature, New Biol. 240, 181–183 (1972)

    Google Scholar 

  • Vassort, G., Rougier, O., Garnier, D., Sauviat, M. P., Coraboeuf, E., Gargouil, Y. M.: Effects of adrenaline on membrane inward currents during the cardiac action potentials. Pflügers Arch. 309, 70–81 (1969)

    Google Scholar 

  • Verdonck, F., Busselen, P., Carmeliet, R.: Ca-action potentials and contractions of heart muscle in Na-free solutions. Influence of caffeine. Arch. Intern. Physiol. Biochem. 80, 167–169 (1972)

    Google Scholar 

  • Weber, A., Herz, R.: The relationship between caffeine contracture of intact muscle and the effect of caffaine on reticulum. J. Gen. Physiol. 52, 750–759 (1968)

    Google Scholar 

  • Wood, E. H., Heppner, R. L., Weidmann, S.: Inotropic effects of electric currents. Circ. Res. 24, 409–445 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beręsewicz, A., Reuter, H. The effects of adrenaline and theophylline on action potential and contraction of mammalian ventricular muscle under “rested-state” and “steady-state” stimulation. Naunyn-Schmiedeberg's Arch. Pharmacol. 301, 99–107 (1977). https://doi.org/10.1007/BF00501423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00501423

Key words

Navigation