Skip to main content
Log in

Binding of agonists and antagonists to β-adrenoceptors in rat vas deferens: relationship to functional response

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The properties of β-adrenoceptors in rat vas deferens were examined using radioligand binding assays of 125I-pindolol (125IPIN) and inhibition of electrically-evoked contractions of vas deferens in vitro. 125IPIN labelled a single class of high affinity binding sites with apparently mass action kinetics in membrane preparations of vas deferens with properties consistent with an essentially homogeneous population of β2-adrenoceptors. Isoprenaline inhibited electrically evoked (60 V, 1.0 ms, 0.1 Hz) contractions of vas deferens with an EC50 of 18.0±2.1 nM. K B values for antagonists in competitively antagonizing this response correlated well (r 2=0.99) with the K D values for inhibition of 125IPIN binding. Inhibition of 125IPIN binding by isoprenaline, adrenaline, noradrenaline and salbutamol was determined under conditions designed to produce high and low affinity agonist binding. In the presence of 10 mM MgCl2, agonists inhibited specific 125IPIN binding with a relatively high potency and low Hill slope, while in the presence of 154 mM NaCl and 300 μM guanosine-5′-triphosphate, agonists inhibited specific 125IPIN binding with a lower potency and an apparent Hill slope closer to 1. To determine which affinity state was relevant to functional receptor stimulation, receptor density was decreased with bromoacetylalprenololmenthane (BAAM). Treatment of membrane preparations with 0.3 μM BAAM produced a 45% decrease in the B max for 125IPIN with no change in the apparent K D. Treatment of intact vasa deferentia with increasing concentrations of BAAM resulted in a progressive rightward shift in the dose-response curve to isoprenaline or salbutamol folowed by a decreased maximum response. K A values for isoprenaline and salbutamol in activating the functional β-adrenoceptors were compared with K I values for agonist inhibition of specific 125IPIN binding. The K A values for both agonists were not significantly different from the low affinity K I values, but were significantly different from the high affinity K I values. These data suggest that 1) a homogeneous population of β2-adrenoceptors inhibiting contraction of rat vas deferens can be labelled with 125IPIN, 2) there is a substantial β-adrenoceptor reserve in rat vas deferens; and 3) the initial event in signal transduction by β-adrenoceptors in rat vas deferens is the binding of agonists to the low affinity form of the receptor which is not complexed with the guanine nucleotide binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    Google Scholar 

  • Baker SP, Pitha J (1982) Irreversible blockade of beta adrenoceptors and their recovery in the rat heart and lung in vivo. J Pharmacol Exp Ther 220:247–251

    Google Scholar 

  • Barovsky K, Brooker G (1980) (-)125I-Iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist; Measurement of beta-receptors on intact rat astrocytoma cells. J Cyclic Nucl Res 6:294–307

    Google Scholar 

  • Bird SJ, Maquire ME (1978) The agonist-specific effect of magnesium ion on binding by beta-adrenergic receptors in S49 lymphoma cells: Interaction of GTP and magnesium in adenylate cyclase activation. J Biol Chem 253:8826–8834

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Chang RSL, Lotti VJ (1983) Characterization of β-adrenergic receptors in the rat vas deferens using [3H]-dihydroalprenolol binding. Life Sci 32:2603–2609

    Google Scholar 

  • Cheng Y-C, Prusoff WH (1973) Relationship between the inhibition constant (K i) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Google Scholar 

  • DeLean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 255:7108–7117

    Google Scholar 

  • Furchgott RF (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In: Harper A, Simmonds B (eds) Advances in drug research, vol 3. Academic Press, London, pp 21–55

    Google Scholar 

  • Furchgott RF, Jurkiewicz A, Jurkiewicz NH (1973) Antagonism of propranolol to isoproterenol in guinea-pig trachea: Some cautionary findings. In: Usdin E, Snyder SH (eds) Frontiers in catecholamine research. Pergamon Press Inc., Elmsford, NY, pp 295–299

    Google Scholar 

  • Haga R, Ross EM, Anderson HJ, Gilman AG (1979) Adenylate cyclase permanently uncoupled from hormone receptors in a novel varient of S49 mouse lymphoma cells. Proc Natl Acad Sci USA 74:2016–2020

    Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 40:iv-vii

    Google Scholar 

  • Hofstee BHJ (1952) On the evaluation of the constants V m and K m in enzyme reactions. Science 116:329–331

    Google Scholar 

  • Kent RS, DeLean A, Lefkowitz RJ (1980) A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 17:14–23

    Google Scholar 

  • Krstew E, Malta E, Raper C (1982) Comparison of guinea pig uterine and rat vas deferens preparations for assessment of beta2-adrenoceptor-mediated activity. J Pharmacol Methods 8:279–289

    Google Scholar 

  • Lefkowitz RJ, Mullikin D, Caron MG (1976) Regulation of beta adrenergic receptors by guanyl-5′-yl imidodiphosphate and other purine nucleotides. J Biol Chem 251:4684–4692

    Google Scholar 

  • Lefkowitz RJ, Caron MG, Mickel T, Stadel JM (1982) Mechanisms of hormone receptor-effector coupling: The β-adrenergic receptor and adenylate cyclase. Fed Proc 41:2664–2670

    Google Scholar 

  • Limbird LE, Gill OM, Lefkowitz RJ (1980) Agonist-promoted coupling of the β-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system. Proc Natl Acad Sci USA 77:775–779

    Google Scholar 

  • Lotti VJ, Chang RSL, Kling P (1980) 332-1 adrenergic responses in the field-stimulated rat vas deferens. Eur J Pharmacol 68:385–386

    Google Scholar 

  • Lotti VJ, Kling P, Cerino D (1982) High and low [Gpp(NH)p-sensitive] affinity sites for β2-adrenergic blockers as antagonists of isoproterenol in the field-stimulated rat vas deferens. Eur J Pharmacol 84:161–167

    Google Scholar 

  • McGrath JC (1978) Adrenergic and non-adrenergic components in the contractile response of the vas deferens to a single indirect stimulus. J Physiol 283:23–39

    Google Scholar 

  • Mackay D (1978) How should values of pA2 and affinity constants for pharmacological competitive antagonists be estimated? J Pharm Pharmac 30:312–313

    Google Scholar 

  • Maguire ME, Van Arsdale PM, Gilman AG (1976) An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol Pharmacol 12:335–339

    Google Scholar 

  • Marsh JD, Smith TW (1985) Receptors for β-adrenergic agonists in cultured chick ventricular cells: Relationship between agonist binding and physiologic effect. Mol Pharmacol 27:10–18

    Google Scholar 

  • Martindale (1977) In: Wade A (ed) The extra pharmacopoeia incorporating squire's companion, 27th edn. The Pharmaceutical Press, London, p 674

    Google Scholar 

  • Minneman KP, Hedberg A, Molinoff PB (1979a) Comparison of beta adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther 211:502–508

    Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979b) Simultaneous determination of beta-1 and beta-2 adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol 16:34–46

    Google Scholar 

  • Minneman KP, Abel PW (1984) “Spare” alpha1-adrenergic receptors and the potency of agonists in rat vas deferens. Mol Pharmacol 25:56–63

    Google Scholar 

  • O'Donnell SR, Wanstall JC (1977) The use of functional antagonism to determine whether β-adrenoceptor agonists must have a lower efficacy than isoprenaline to be trachea-atria selective in guinea-pigs. Br J Pharmacol 60:255–262

    Google Scholar 

  • Pitha J, Zjawiony J, Nasrin N, Lefkowitz RJ, Caron MG (1980) Potent beta adrenergic antagonist possessing chemically reactive group. Life Sci 27:1791–1798

    Google Scholar 

  • Pitha J, Hughes BA, Kusiak JW, Dax EM, Backer SP (1982) Regeneration of β-adrenergic receptors in senescent rats: A study using an irreversible binding antagonist. Proc Natl Acad Sci USA 79:4424–4427

    Google Scholar 

  • Ross EM, Gilman AG (1977) Reconstitution of catecholamine-sensitive adenylate cyclase activity: Interaction of solubilized components with receptor-replete membranes. Proc Natl Acad Sci USA 74:3715–3719

    Google Scholar 

  • Sneddon, P, Westfall DP, Colby J, Fedan JS (1984) A pharmacological investigation of the biphasic nature of the contractile response of rabbit and rat vas deferens to field stimulation. Life Sci 35:1903–1912

    Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Brit J Pharmacol 11:379–393

    Google Scholar 

  • Terasaki WL, Linden J, Brooker G (1979) Quantitative relationship between beta-adrenergic receptor number and physiologic responses as studied with a long-lasting beta-adrenergic antagonist. Proc Natl Acad Sci USA 76:6401–6405

    Google Scholar 

  • Venter JC (1979) High efficiency coupling between beta-adrenergic receptors and cardiac contractility: Direct evidence for “spare” beta-adrenergic receptors. Mol Pharmacol 16:429–440

    Google Scholar 

  • Vohra MM (1979) Evidence for the presence of β2-inhibitory adrenoceptors in the rat vas deferens. Gen Pharmacol 10:221–225

    Google Scholar 

  • Williams LT, Mullikin D, Lefkowitz RJ (1978) Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J Biol Chem 253:2984–2989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by HL29871 and an Advanced Predoctoral Fellowship from the Pharmaceutical Manufacturers Association Foundation to J.M.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, J.M., Abel, P.W. & Minneman, K.P. Binding of agonists and antagonists to β-adrenoceptors in rat vas deferens: relationship to functional response. Naunyn-Schmiedeberg's Arch. Pharmacol. 331, 324–333 (1985). https://doi.org/10.1007/BF00500814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500814

Key words

Navigation