Skip to main content
Log in

Characterization of alcohol dehydrogenase in young soybean seedlings

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Molecular properties of alcohol dehydrogenase (ADH) were examined in young soybean seedlings. Soybean radicle tissue is ADH-rich. Enzyme specific activity decreases slowly with the development of roots and becomes almost undetectable when the first true leaves appear. Soybean ADH was not found to be inducible by flooding. 2,4-Dichlorophenoxyacetic acid (2,4-D) treatment increased ADH specific activity as much as 14-fold. Only one ADH isozyme was detected by isoelectric focusing. By DNA-DNA hybridization, soybean ADH genomic sequences were shown to be partly homologous to maize ADH1 cDNA. The presence of more than one Adh gene in soybean is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C., and Rinne, R. W. (1982). Stress protein formation: Gene expression and environmental interaction with evolutionary significance. Int. Rev. Cytol. 79305.

    Google Scholar 

  • Barthova, J., and Leblova, S. (1978). Lactate dehydrogenase from germinanting plants. In Hook, D. D., and Crawford, R. M. M. (eds.), Plant Life in Anaerobic Environments Ann Arbor Science, Ann Arbor, Mich., p. 463.

    Google Scholar 

  • Beremand, M. (1979). Soybean Alcohol Dehydrogenases. Complexity, Subunit Composition and Relatedness to Other Alcohol Dehydrogenases Ph.D. thesis, Indiana University, Bloomington.

    Google Scholar 

  • Birnboim, H. C. (1983). A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 100243.

    Google Scholar 

  • Czarnecka, E., Edelman, L., Schöffl, F., and Key, J. L. (1984). Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs. Plant Mol. Biol. 345.

    Google Scholar 

  • Dennis, E. S., Gerlach, W. L., Pryor, A. J., Bennetzen, J. L., Inglis, A., Llewellyn, D., Sachs, M. M., Ferl, R. J., and Peacock, W. J. (1984). Molecular analysis of the alcohol dehydrogenase (ADH1) gene of maize. Nucleic Acids Res. 123983.

    Google Scholar 

  • Dennis, E. S., Sachs, M. M., Gerlach, W. L., Finnegan, E. J., and Peacock, W. J. (1985). Molecular analysis of the alcohol dehydrogenase 2 (ADH2) gene of maize. Nucleic Acids Res. 13727.

    Google Scholar 

  • Dolferus, R., and Jacobs, M. (1984). Polymorphism of alcohol dehydrogenase in Arabidopsis thaliana (L.) Heynh: Genetical and biochemical characterization. Biochem. Genet. 22817.

    Google Scholar 

  • Dolferus, R., Marbaix, G., and Jacobs, M. (1985). Alcohol dehydrogenase in Arabidopsis: Analysis of the induction phenomenon in plantlets and tissue cultures. Mol. Gen. Genet. 199256.

    Google Scholar 

  • Drew, M. C., and Lynch, J. M. (1980). Soil anaerobiosis, microorganisms and root function. Annu. Rev. Phytopathol. 1837.

    Google Scholar 

  • Ferl, R. J., Brennan, M. D., and Schwartz, D. (1980). In vitro translation of maize ADH: Evidence for the anaerobic induction of mRNA. Biochem. Genet. 18681.

    Google Scholar 

  • Ferl, R. J. (1985). Modulation of chromatin structure in the regulation of the maize Adhl gene. Mol. Gen. Genet. 200207.

    Google Scholar 

  • Freeling, M. (1973). Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specified by two unlinked genes: Differential ADH1-ADH2 expression in maize. Mol. Gen. Genet. 127215.

    Google Scholar 

  • Freeling, M., and Bennett, D. C. (1985). Maize Adh1. Annu. Rev. Genet. 19297.

    Google Scholar 

  • Gerlach, W. L., Pryor, A. J., Dennis, E. S., Ferl, R. J., Sachs, M. M., and Peacock, W. J. (1982). cDNA cloning and induction of the alcohol dehydrogenase gene (ADH1) of maize. Proc. Natl. Acad. Sci. USA 792981.

    Google Scholar 

  • Gottlieb, L. D. (1982). Conservation and duplication of isozymes in plants. Science 216373.

    Google Scholar 

  • Jenkin, L. E. T., and ap Rees, T. (1983). Effects of anoxia and flooding on alcohol dehydrogenase in roots of Glyceria maxima and Pisum sativum. Phytochemistry 222389.

    Google Scholar 

  • Lai, Y.-K., and Scandalios, J. G. (1980). Genetic determination of the developmental program for maize scultellar alcohol dehydrogenase: Involvement of a recessive, trans-acting, temporal-regulatory gene. Dev. Gen. 1311.

    Google Scholar 

  • Leblova, S. (1978). Pyruvate conversions in higher plants during natural anaerobiosis. In Hook, D. D., and Crawford, R. M. M. (eds.), Plant Life in Anaerobic Environments Ann Arbor Science. Ann Arbor, Mich., p. 155.

    Google Scholar 

  • Leblova, S., and Perglerova, E. (1976). Soybean alcohol dehydrogenase. Phytochemistry 15813.

    Google Scholar 

  • Marshall, D. R., Broué, P., and Oram, R. N. (1974). Genetic control of alcohol dehydrogenase isozymes in narrow-leafed lupins. J. Hered. 65198.

    Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase 1. J. Mol. Biol. 113237.

    Google Scholar 

  • Roberts, J. K. M., Callis, J., Jardetzky, O., Walbot, V., and Freeling, M. (1984). Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA 816029.

    Google Scholar 

  • Sachs, M. M., and Freeling, M. (1978). Selective synthesis of alcohol dehydrogenase during anaerobic treatment of maize. Mol. Gen. Genet. 161111.

    Google Scholar 

  • Sachs, M. M., Freeling, M., and Okimoto, R. (1980). The anaerobic proteins of maize. Cell 20761.

    Google Scholar 

  • Singh, L., and Jones, K. W. (1984). The use of heparin as a simple cost-effective means of controlling background in nucleic acid hybridization procedures. Nucleic Acids Res. 125627.

    Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98503.

    Google Scholar 

  • Talbot, B. G., and Thirion, J.-P. (1979). Comparison of the properties of the alcohol dehydrogenases from wild-type and mutant Chinese hamster somatic cells. Biochem. Genet. 17807.

    Google Scholar 

  • Talbot, B. G., Qureshi, A. A., Cohen, R., and Thirion, J.-P. (1981). Purification and properties of two distinct groups of ADH isozymes from Chinese hamster liver. Biochem. Genet. 19813.

    Google Scholar 

  • Tanksley, S. D., and Jones, R. A. (1981). Effects of O2 stress on tomato alcohol dehydrogenase activity: Description of a second ADH coding gene. Biochem. Genet. 19397.

    Google Scholar 

  • Thirion, J.-P., and Talbot, B. (1978). Alcohol dehydrogenase mutants of Chinese hamster somatic cells resistant to allyl alcohol. Genetics 88343.

    Google Scholar 

  • Torres, A. M., Diedenhofen, V., and Johnstone, I. M. (1977). The early allele of alcohol dehydrogenase in sunflower populations. J. Hered. 6811.

    Google Scholar 

  • Van Driessche, E., Beeckmans, S., Dejaegere, R., and Kanarek, L. (1984). Thiourea: The antioxidant of choice for the purification of proteins from phenol-rich plant tissues. Anal. Biochem. 141184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzezinski, R., Talbot, B.G., Brown, D. et al. Characterization of alcohol dehydrogenase in young soybean seedlings. Biochem Genet 24, 643–656 (1986). https://doi.org/10.1007/BF00498999

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498999

Key words

Navigation