Skip to main content
Log in

Growth inhibition of hopanoid synthesizing bacteria by squalene cyclase inhibitors

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

2,3-Dihydro-2-azasqualene, its N-oxide and its N,N-diethyl analogue, as well as 2,3-dihydro-2,3-iminosqualene are potent inhibitors of the squalene to hopanoid (diplotene and diplopterol) cyclases in cell-free systems from Acetobacter pasteurianus ssp pasteurianus, Methylobacterium organophilum and Zymomonas mobilis. The inhibitory concentration giving 50% inhibition at a 120 μM squalene concentration was determined in each cases. The growth of hopanoid producing prokaryotes (with the exception of Acetobacter pasteurianus ssp pasteurianus and Pseudomonas syringae probably capable of degrading the drugs) was inhibited by these squalene analogues at concentrations in the μM range, whereas the growth of hopanoid non-producers was not affected at the highest tested concentration (200 μM). Thus hopanoids which have been shown to possess similar properties to those of sterols in membrane reinforcement are probably essential for the cells producing them. Furthermore, all tested hopanoid producers are very sensitive to trimethyloctadecyl ammonium bromide which does not inhibit the squalene to hopane cyclases at a 50 μM concentration, and do not grow after 24 h in its presence at a 1 μM minimal inhibitory concentration. Growth of hopanoid non-producers was however not affected by this ammonium salt (highest tested concentration: 200 μM). The mode of action of this cationic detergent is still unknown, but might be related to specific desorganization of hopanoid containing membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TLC:

thin layer chromatography

References

  • Anding A, Rohmer M, Ourisson G (1976) Non-specific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J Am Chem Soc 94:3257–3259

    Google Scholar 

  • Arpin N, Norgard S, Francis GW, Liaaen-Jensen S (1973) Bacterial carotenoids. 11. C45-and C50-carotenoids from Sarcina lutea—Sarcinaxanthin. Acta Chem Scand 27:2321–2324

    Google Scholar 

  • Baley GJ, Peck GE, Baker GS (1977) Bactericidal properties of quaternary ammonium complexes in dispersed systems. J Pharm Sci 66:696–699

    Google Scholar 

  • Benz R, Hallmann D, Poralla K, Eibl H (1983) Interaction of hopanoids with phosphatidylcholines containing oleic acid and ω-cyclohexyldecanoic acid in lipid bilayer membranes. Chem Phys Lipids 34:7–24

    Google Scholar 

  • Biellmann JF, Ducep JB (1969) Synthèse du squalène par couplage queue à queue. Tetrahedron Lett 42:3707–3710

    Google Scholar 

  • Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatani Y, Ourisson G (1983) A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω-dihydroxycarotenoids. Biochem Biophys Res Commun 110:320–324

    Google Scholar 

  • Blois DW, Swarbrick J (1972) Interactions of quaternary ammonium bactericides with biological materials. I. Conductimetric studies with cephalin. J Pharm Sci 61:390–392

    Google Scholar 

  • Bouvier P (1978) Biosynthèse de stéroïdes et de triterpénoïdes chez les procaryotes et les eucaryotes. Thèse de Docteur ès Sciences, Université Louis Pasteur, Strasbourg, France

    Google Scholar 

  • Bouvier P, Berger Y, Rohmer M, Ourisson G (1980) Non-specific biosynthesis of gammacerane derivatives by a cell-free system from the protozoon Tetrahymena pyriformis. Eur J Biochem 112:549–556

    Google Scholar 

  • Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140:312–316

    Google Scholar 

  • Camera B, d'Harlingue A, Dogbo O, Agnes C, Hénaff J (1985) Sur de nouveaux inhibiteurs hautement actifs de la biosynthèse de terpénoïdes végétaux. CR Acad Sc Paris 300 (III):297–300

    Google Scholar 

  • Cerutti M, Delprino L, Cattel L, Bouvier-Navé P, Duriatti A, Schuber F, Benveniste P (1985) N-Oxide as a potential function in the design of enzyme inhibitors. Application to 2,3-epoxysqualene cyclase. Chem Commun 1054–1055

  • Chou TC (1974) Relationships between inhibition constants and fractional inhibition in enzyme catalyzed reactions with different numbers of reactants, different reaction mechanisms, and different types and mechanisms of inhibition. Mol Pharmacol 10:235–247

    Google Scholar 

  • Corey EJ, Ortiz de Montellano PR, Lin K, Dean PDG (1967) 2,3-Iminosqualene, a potent inhibitor of enzymic cyclization of 2,3-oxidosqualene to sterols. J Am Chem Soc 89:2797–2798

    Google Scholar 

  • Delprino L, Balliano G, Cattel L, Benveniste P, Bouvier P (1983) Inhibition of higher plant 2,3-oxidosqualene cyclase by 2,3-aza-2,3-dihydrosqualene and its derivatives. Chem Commun 381–382

  • Duriatti A, Bouvier-Navé P, Benveniste P, Schuber F, Delprino L, Balliano G, Cattel L (1985) In vitro inhibition of animal and higher plants 2,3 oxido squalene-sterol cyclases by 2-aza-2,3-dihydrosqualene and derivatives, and by other ammonium containing molecules. Biochem Pharmacol 34:2765–2777

    Google Scholar 

  • Ecanow B, Siegel FP (1963) Ferguson principle and the critical micellar concentration. J Pharm Sci 52:812–813

    Google Scholar 

  • Eugster CH (1979) Characterization, chemistry and stereochemistry of carotenoids. Pure Appl Chem 51:463–506

    Google Scholar 

  • Hancock IC, Williams KM (1986) The outer membrane of Methylobacterium organophilum. J Gen Microbiol 132:599–610

    Google Scholar 

  • Heintz R (1973) Utilisation de fractions subcellulaires pour l'étude de la biosynthèse de stérols végétaux supérieurs. Thèse de Docteur ès Sciences, Université Louis Pasteur, Strasbourg, France

    Google Scholar 

  • Heintz R, Benveniste P (1970) Cyclisation de l'époxyde-2,3 de squalène par des microsomes extraits de tissus de tabac cultivés in vitro. Phytochemistry 9:1499–1503

    Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. Biochem J 58:345–352

    Google Scholar 

  • Jencks WP (1975) Binding energy, specificity, and enzymic catalysis: the Circe effect. Adv Enzymol 43:219–410

    Google Scholar 

  • Kannenberg E, Poralla K (1982) The influence of hopanoids on growth of Mycoplasma mycoides. Arch Microbiol 133:100–102

    Google Scholar 

  • Kannenberg E, Poralla K, Blume A (1980) A hopanoid from the thermoacidophilic Bacillus acidocaldarius condenses membranes. Naturwissenschaften 67:458–459

    Google Scholar 

  • Kannenberg E, Blume A, McElhaney RN, Poralla K (1983) Monolayer and calorimetric studies of phosphatidylcholines containing branched-chain fatty acids and of their interactions with cholesterol and with a bacterial hopanoids in model membranes. Biochim Biophys Acta 733:111–116

    Google Scholar 

  • Kannenberg E, Blume A, Geckeler K, Poralla K (1985) Properties of hopanoids and phosphatidylcholines containing ω-cyclohexane fatty acids in monolayers and liposomes experiments. Biochim Biophys Acta 814:179–185

    Google Scholar 

  • Kohl W, Achenbach H, Reichenbach H (1983) The pigments of Brevibacterium linens: aromatic carotenoids. Phytochemistry 22:207–210

    Google Scholar 

  • Meiberg JBM, Harder W (1978) Aerobic and anaerobic metabolism of trimethylamine dimethylamine and methylamine in Hyphomicrobium X. J Gen Microbiol 106:265–276

    Google Scholar 

  • Neumann S, Simon H (1986) Purification, partial characterization and substrate specificity of a squalene cyclase from Bacillus acidocaldarius. Biol Chem Hoppe-Seyler 367:723–729

    Google Scholar 

  • Ourisson G, Rohmer M (1982) Prokaryotic polyterpenes: phylogenetic precursors of sterols. Curr Topics Membr Transp 17:153–182

    Google Scholar 

  • Poralla K, Kannenberg E, Blume A (1980) A glycolipid containing hopane isolated from the acidophilic thermophilic Bacillus acidocaldarius has a cholesterol-like function in membrane. FEBS Lett 113:107–110

    Google Scholar 

  • Poralla K, Härtner T, Kannenberg E (1984) Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol Lett 23:253–256

    Google Scholar 

  • Renoux JM, Rohmer M (1985) Prokaryotic triterpenoids. New bacteriohopanetetrol cyclitol ethers from methylotrophic bacterium Methylobacterium organophilum. Eur J Biochem 151:405–410

    Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 76:847–851

    Google Scholar 

  • Rohmer M, Anding C, Ourisson C (1980a) Non-specific biosynthesis of hopane triterpenes by a cell-free system from Acetobacter pasteurianus. Eur J Biochem 112:541–547

    Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1980b) Non-specific lanosterol and hopanoid biosynthesis by a cell-free system from the bacterium Methylococcus capsulatus. Eur J Biochem 112:557–560

    Google Scholar 

  • Rohmer M, Bouvier-Navé P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150

    Google Scholar 

  • Seckler B, Poralla K (1986) Characterization and partial purification of squalene-hopane cyclase form Bacillus acidocaldarius. Biochim Biophys Acta 881:356–363

    Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane utilizing bacteria. J Gen Microbiol 61:205–208

    Google Scholar 

  • Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol Rev 41:754–808

    Google Scholar 

  • Wislocki PG, Miwa GT, Lu AYH (1980) Reaction catalyzed by the cytochrome P-450 system. In: Jakoby WB (ed) Enzymatic basis of detoxication, vol 1. Academic Press, New York, pp 150–156

    Google Scholar 

  • Wolfenden R (1976) Transition state analogy inhibitors and enzyme catalysis. Annu Rev Biophys 5:271–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flesch, G., Rohmer, M. Growth inhibition of hopanoid synthesizing bacteria by squalene cyclase inhibitors. Arch. Microbiol. 147, 100–104 (1987). https://doi.org/10.1007/BF00492912

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00492912

Key words

Navigation