Skip to main content
Log in

Gene diversity of bovid hemoglobins

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Forty-five adult hemoglobin molecular forms which include 22 electrophoretically silent forms were structurally characterized from animal species of nine genera belonging to family Bovidae. Of the 12 different bovid species studied, 11 showed either α or β chain heterogeneity in their hemoglobins while eight species showed heterogeneity for both polypeptide chains. Wherever possible, the genetic basis for hemoglobin phenotypes has been suggested. By construction of a phylogenetic tree for 14 ungulate α-globin sequences, the evolutionary origins of duplicated α chain genes present in some ungulate species have been located, and the phyletic relationship of bovids based on the α globin data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Oishi, T., and Suzerki, S. (1969). Hemoglobin, transferrin and albumin variants in Formosan water buffalo. Proc. Jpn. Acad. 45767.

    Google Scholar 

  • Adams, H. R., Boyd, E. M., Wilson, J. B., Miller, A., and Huisman, T. H. J. (1968). Structure of goat hemoglobins: Hemoglobin D, a β variant with one apparent amino acid substitution. Arch. Biochem. Biophys. 127398.

    Google Scholar 

  • Balani, A. S., and Barnabas, J. (1964). Evaluation of multiple hemoglobins of ruminants by tryptic peptide pattern analysis. Ind. J. Biochem. 1220.

    Google Scholar 

  • Balani, A. S., and Barnabas, J. (1965). Polypeptide chains of buffalo hemoglobins. Nature 2051019.

    Google Scholar 

  • Barnabas, J., and Muller, C. J. (1962). Hemoglobin Lepore Hollandia. Nature 194931.

    Google Scholar 

  • Braend, M., and Stormont, C. (1963). Hemoglobin and transferrin types in the American buffalo. Nature 197910.

    Google Scholar 

  • Braunitzer, G., and Matsuda, G. (1963). Primary structure of α-chains from horse hemoglobin. J. Biochem. 53262.

    Google Scholar 

  • Chernoff, A. I., and Pettit, N. M. (1964). The amino acid composition of hemoglobin. III. A quantitative method for identifying abnormalities of the polypeptide chains of hemoglobins. Blood 24750.

    Google Scholar 

  • Clegg, J. B., Naughton, M. A., and Weatherall, D. J. (1966). Separation and characterisation of the α- and β-chains by chromatography and determination of two new variants Hb (Chesapeake) and Hb-J (Bankok). J. Mol. Biol. 1991.

    Google Scholar 

  • Colbert, E. H. (1955). Evolution of the Vertebrates Wiley, New York.

    Google Scholar 

  • Dayhoff, M. O. (1972, 1973, 1976). Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 1, and Suppl. 2, National Biochemical Research Foundation, Georgetown University Medical Center, Washington, D.C.

    Google Scholar 

  • Dozy, A. M., Kleihaur, E. F., and Huisman, T. H. J. (1968). Heterogeneity of hemoglobins: Chromatography of various human and animal hemoglobin types on DEAE-Sephadex. J. Chromatog. 32723.

    Google Scholar 

  • Garrick, L. M., Sharma, V. S., McDonald, M. J., and Ranney, H. M. (1975). Rat hemoglobin heterogeneity. Two structurally distinct α-chains and functional behavior of selected components. Biochem. J. 149245.

    Google Scholar 

  • Garrick, M. D., and Huisman, T. H. J. (1968). Gene duplication of the α-chain of goat hemoglobin; evidence from a homozygous mutant. Biochim. Biophys. Acta 168585.

    Google Scholar 

  • Harris, M. J., Wilson, J. B., and Huisman, T. H. J. (1972). Structural studies of hemoglobin α-chain from Virginia white tailed deer. Arch. Biochem. Biophys. 151540.

    Google Scholar 

  • Huisman, T. H. J., and Schroeder, W. A. (1971). New Aspects of the Structure, Function and Synthesis of Hemoglobins National Biochemical Research Foundation, Butterworths, London.

    Google Scholar 

  • Huisman, T. H. J., Brandt, G., and Wilson, J. B. (1968a). The structure of goat hemoglobins; structural studies of α-chains of the hemoglobins A and B. J. Biol. Chem. 2433675.

    Google Scholar 

  • Huisman, T. H. J., Dozy, A. M., Wilson, J. B., Efremov, G. D., and Vaskov, B. (1968b). Sheep hemoglobin D, an α-chain variant with one apparent amino acid substitution. Biochim. Biophys. Acta 160467.

    Google Scholar 

  • Jones, R. T., Brimhall, B., and Duerst, M. (1971). Amino acid sequence of the α- and β-chains of dog hemoglobin. Fed. Proc. Abs. 301259.

    Google Scholar 

  • Kilmartin, J. V., and Clegg, J. B. (1967). Amino acid replacement in horse hemoglobin. Nature 213269.

    Google Scholar 

  • Lalthantluanga, R., Gulati, J. M., and Barnabas, J. (1975). Hemoglobin genetics in bovines and equines. Ind. J. Biochem. Biophys. 1251.

    Google Scholar 

  • McKenna, M. C. (1969). The origin and early differentiation of therian mammals. Ann. N.Y. Acad. Sci. 167217.

    Google Scholar 

  • Moore, G. W., Barnabas, J., and Goodman, M. (1973). A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J. Theor. Biol. 38459.

    Google Scholar 

  • Morris, W. J. (1966). Fossil mammals from Baja California: New evidence on early Tertiary migrations. Science 1531376.

    Google Scholar 

  • Moss, B., and Ingram, V. M. (1968). Hemoglobin synthesis during amphibian metamorphosis. J. Mol. Biol. 32481–492.

    Google Scholar 

  • Ranjekar, P. K., and Barnabas, J. (1969). Hemoglobin phenotypes in water buffalo during development. Comp. Biochem. Physiol. 281395.

    Google Scholar 

  • Romer, A. S. (1966). Vertebrate Paleontology University of Chicago Press, Chicago.

    Google Scholar 

  • Schroeder, W. A., Shelton, J. R., Shelton, J. B., Robberson, B., and Babin, D. R. (1967). A comparison of amino acid sequences in the β-chain of adult bovine hemoglobins A and B. Arch. Biochem. Biophys. 120124.

    Google Scholar 

  • Schroeder, W. A., Shelton, J. R., Shelton, J. B., Apell, G., Huisman, T. H. J., Smith, L. L., and Carr, W. R. (1972). Amino acid sequences in β-chains of adult bovine hemoglobin: C-Rhodesia and D-Zambia. Arch. Biochem. Biophys. 152222.

    Google Scholar 

  • Wade, P. T., Skinner, A. F., Barnicot, N. A., and Huehn, E. R. (1969). Duplication of hemoglobin α-chain locus in Macaca irus. Protides Biol. Fluids Proc. Colloq. 17263.

    Google Scholar 

  • Wilson, J. B., Edwards, W. C., McDaniel, M., Dobbs, M. M., and Huisman, T. H. J. (1966). Structure of sheep hemoglobins: The amino acid composition of the tryptic peptides of the non α-chains of hemoglobins A, B, C and F. Arch. Biochem. Biophys. 115385.

    Google Scholar 

  • Wilson, J. B., Brandt, G., and Huisman, T. H. J. (1968). The structure of sheep hemoglobins: Structural studies of α-chains of the hemoglobins A and B. J. Biol. Chem. 2433687.

    Google Scholar 

  • Wilson, J. B., Wrightstone, R. N., and Huisman, T. H. J. (1970). Hemoglobin α-chain duplication in barbary sheep (Ammotragus lervia). Nature 226354.

    Google Scholar 

  • Wrightstone, R. N., Wilson, J. B., Miller, A., and Huisman, T. H. J. (1970). Structure of goat hemoglobins. IV. Third β-chain variant with three apparent amino acid substitutions. Arch. Biochem. Biophys. 138451.

    Google Scholar 

  • Yamaguchi, Y., Horic, H., Matsuo, A., Shigeru, S., and Satake, K. (1965). Chemical structure of procine globin α. J. Biochem. (Tokyo) 58186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, M.E., Barnabas, J. Gene diversity of bovid hemoglobins. Biochem Genet 16, 787–798 (1978). https://doi.org/10.1007/BF00484736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484736

Key words

Navigation