Skip to main content
Log in

Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A new, rod-shaped, Gram-negative, non-sporing sulfate reducer (strain Ani1) was enriched and isolated from marine sediment with aniline as sole electron donor and carbon source. The strain degraded aniline completely to CO2 and NH3 with stoichiometric reduction of sulfate to sulfide. Strain Ani1 also degraded aminobenzoates and further aromatic and aliphatic compounds. The strain grew in sulfide-reduced mineral medium supplemented only with vitamin B12 and thiamine. Cells contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P 582, but no desulfoviridin. Strain Ani1 is described as a new species of the genus Desulfobacterium, D. anilini. Marine enrichments with the three dihydroxybenzene isomers led to three different strains of sulfate-reducing bacteria; each of them could grow only with the isomer used for enrichment. Two strains isolated with catechol (strain Cat2) or resorcinol (strain Re10) were studied in detail. Both strains oxidized their substrates completely to CO2 and contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P 582. Desulfoviridin was not present. Whereas the rod-shaped catechol oxidizer (strain Cat2) was able to grow on 18 aromatic compounds and several aliphatic substrates, the coccoid resorcinol-degrading bacterium (strain Re10) utilized only resorcinol, 2,4-dihydroxybenzoate and 1,3-cyclohexanedion. These strains could not be affiliated with existing species of sulfate-reducing bacteria. A further coccoid sulfate-reducing bacterium (strain Hy5) was isolated with hydroquinone and identified as a subspecies of Desulfococcus multivorans. Most-probable-number enumerations with catechol, phenol, and resorcinol showed relatively large numbers (104–106 per ml) or aryl compound-degrading sulfate reducers in marine sediment samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Public Health Association Inc. (ed) (1969) Standard methods for the examination of water and waste water including bottom sediments and sludge. New York, pp. 604–609

  • Aoki K, Kemori T, Shinke R, Nishira H (1985) Further characterization of bacterial production of anthranilic acid form aniline. Agric Biol Chem 49:1151–1158

    Google Scholar 

  • Backofer R, Lingens F, Schäfer W (1975) Conversion of aniline into pyrocatechol by Nocardia sp., incorporation of oxygen-18. FEBS Lett 50:288–290

    Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Google Scholar 

  • Bak F, Widdel F (1986a) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures and description of Desulfobacterium indolicum gen. nov. sp. nov. Arch Microbiol 146:170–176

    Google Scholar 

  • Bak F, Widdel F (1986b) Anaerobic degradation of phenol and phenol derivates by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146:177–180

    Google Scholar 

  • Bakker G (1977) Anaerobic degradation of aromatic compounds in the presence of nitrate. FEMS Microbiol Lett 1:103–108

    Google Scholar 

  • Bollag JM, Russel S (1976) Aerobic versus anaerobic metabolism of halogenate anilines by a Paracoccus sp. Microb Ecol 3:65–73

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. Arch Microbiol 136:222–229

    Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for the determination of urea and ammonia. Clin Chem 8:130–132

    Google Scholar 

  • Cline E (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Google Scholar 

  • Colberg PJ, Young LY (1985) Anaerobic degradation of soluble fractions of [14C-lignin]-lignocellulose. Appl Environ Microbiol 49:345–349

    Google Scholar 

  • Diekert GB, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606

    Google Scholar 

  • Franck HG, Stadelhofer JW (1987) Industrielle Aromatenchemie. Springer, Berlin Heidelberg

    Google Scholar 

  • Gibson GR, Parks RJ, Herbert RA (1987) Evaluation of viable counting procedures for the enumeration of sulfate-reducing bacteria in estuarine sediment. J Microbiol Meth 7:201–210

    Google Scholar 

  • Janke D, Al-Mofarji T, Straube G, Schuman P, Prauser H (1988) Critical steps in degradation of chloroaromatics by rhodococci. I. Initital enzyme reactions involved in catabolism of aniline, phenol and benzoate by Rhodococcus sp. An117 and An213. J Basic Microbiol 28:509–518

    Google Scholar 

  • Laanbroek HJ, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediment. Arch Microbiol 128:330–335

    Google Scholar 

  • Lyons CD, Katz S, Bartha R (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl Environ Microbiol 48:491–496

    Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Google Scholar 

  • Postgate JR (1959) A diagnostic reaction of Desulphovibrio desulphuricans. Nature (Lond) 183:481–482

    Google Scholar 

  • Reber H, Helm V, Karanth NGK (1979) Comparative studies on the metabolism of aniline and chloroaniline by Pseudomonas multivorans strain An1. Eur J Appl Microbiol Biotechnol 7:181–189

    Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic non-sporing bacterium. Arch Microbiol 133:195–201

    Google Scholar 

  • Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by a strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147:163–168

    Google Scholar 

  • Tabatabai MA (1974) Determination of sulfate in water samples. Sulfur Inst J 10:11–13

    Google Scholar 

  • Trudinger PA (1970) Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction. J Bacteriol 104:158–170

    Google Scholar 

  • Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217

    Google Scholar 

  • Tschech A, Schink B (1985) Fermentative degradation of resorcinol and resorcylic acids. Arch Microbiol 143:52–59

    Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. Biology of anaerobic microorganisms. Zehnder AJB (ed). John Wiley, New York, pp 469–585

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, IXth ed, vol 1. Williams & Wilkins, Baltimore London

    Google Scholar 

  • Wyndham RC (1986) Evolved aniline catabolism in Acinetobacter calcoaceticus during continuous culture of river water. Appl Environ Microbiol 51:781–789

    Google Scholar 

  • Ziegler K, Braun K, Böckler A, Fuchs G (1987) Studies on the anaerobic degradation of benzoic acid and 2-aminobenzoic acid by a denitrifying Pseudomonas strain. Arch Microbiol 149:62–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, S., Bak, F. & Pfennig, N. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini . Arch. Microbiol. 152, 556–563 (1989). https://doi.org/10.1007/BF00425486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425486

Key words

Navigation