Skip to main content
Log in

Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Few selective markers are available for the transformation of the industrial yeast Yarrowia lipolytica, and those that are require the use of specialized hosts (e.g., auxotrophs, antibiotic sensitive). To enable the transformation of any Y. lipolytica strain, we used the property that Y. lipolytica cannot use sucrose as a sole carbon source. We have constructed a gene fusion where the Saccharomyces cerevisiae SUC2 gene is placed under the control of the promoter and signal sequence of the Y. lipolytica XPR2 gene, which encodes an Alkaline Extracellular Protease (AEP). Strains bearing this fusion express invertase activity and grow on sucrose as a carbon source. The activity follows the same regulation as does the alkaline extracellular protease, is secreted into the periplasm and confers a Suc+ phenotype. It was shown that this chimeric gene could be used as a dominant marker for transformation in a one-step procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahearn DG, Meyers SP, Nichols RA (1968) Appl Microbiol 16:1370–1374

    Google Scholar 

  • Basset J, Mortimer R (1973) J Bacteriol 114:894–896

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41:459–472

    Google Scholar 

  • Carlson M, Botstein D (1982) Cell 28:145–154

    Google Scholar 

  • Cohen JD, Eccleshall TR, Needlemann RB, Federoff H, Buchferer BA, Marmur J (1980) Proc Natl Acad Sci USA 77:1078–1082

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Gene 6:23–28

    Google Scholar 

  • Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR (1985) Curr Genet 10:39–48

    Google Scholar 

  • Davidow LA, Franke AE, DeZeeuw JR (1987) European Patent Application 220864

  • Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, DeZeeuw JR, Franke AE (1987) J Bacteriol 169:4621–4629

    Google Scholar 

  • Efimov VA, Burykova AA, Reverdato SV, Chakhmakhcheva OG, Ovchinnikov YA (1983) Nucleic Acids Res 11:8369

    Google Scholar 

  • Gaillardin C, Ribet AM (1987) Curr Genet 11:369–375

    Google Scholar 

  • Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92:69–83

    Google Scholar 

  • Gaillardin C, Ribet AM, Heslot H (1985) Curr Genet 10:49–58

    Google Scholar 

  • Hecht SM (1986) Fed Proc 45:2784–2791

    Google Scholar 

  • Holmes DS, Quigley M (1981) Anal Biochem 114:193

    Google Scholar 

  • Jimenez A, Davies J (1980) Nature 287:869–871

    Google Scholar 

  • Kamada M, Ogura S, Oda K, Murao S (1972) Agric Biol Chem 36:171–175

    Google Scholar 

  • Klug MJ, Markovetz AJ (1967) J Bacteriol 93:1847–1851

    Google Scholar 

  • Klug MJ, Markovetz AJ (1969) Biotechnol Bioeng 11:427–440

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Matoba S, Fukayama J, Wing R, Ogrydziak DM (1988) Mol Cell Biol 8:4904–4916

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Ogrydziak DM, Scharf SJ (1982) J Gen Microbiol 128:1225–1234

    Google Scholar 

  • Ogrydziak DM, Demain AL, Tannenbaum SR (1977) Biochem Biophys Acta 497:525–538

    Google Scholar 

  • Robinson JS, Klionsky DJ, Banta LM, EMR SD (1988) Mol Cell Biol 8:4936–4948

    Google Scholar 

  • Sanger F, Nicklen S, Couloon AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 90–92

    Google Scholar 

  • Taussig R, Carlson M (1983) Nucleic Acids Res 11:1943–1954

    Google Scholar 

  • Taylor JW, Ott J, Eckstein F (1985) Nucleic Acids Res 13:8764–8785

    Google Scholar 

  • Tobe ST, Takami S, Ikeda S, Mitsugi K (1976) Agric Biol Chem 40:1037–1092

    Google Scholar 

  • von Heijne G (1986) Nucleic Acids Res 14:4683–4690

    Google Scholar 

  • Werner W, Rey HG, Wielinger H (1970) Z Anal Chem 252:224–225

    Google Scholar 

  • Xuan J-W, Fournier P, Gaillardin C (1988) Curr Genet 14:15–21

    Google Scholar 

  • Yanisch-Perron C, Vigra J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicaud, JM., Fabre, E. & Gaillardin, C. Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16, 253–260 (1989). https://doi.org/10.1007/BF00422111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422111

Key words

Navigation