Skip to main content
Log in

Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

From anoxic marine sediment samples, new anaerobic, microaerotolerant, Gram-negative, non-sporeforming bacteria were isolated which grew in mineral medium with malonate as sole source of carbon and energy. Cells were motile thin rods, often forming large aggregates. Malonate was decarboxylated to acetate with concomitant growth yields of 1.9–2.1 g dry cell matter per mol malonate degraded. Fumarate and malate were fermented to succinate and CO2. No other substrates were used. No inorganic electron acceptors were reduced. At least 150 mM NaCl was required for growth with either substrate. High amounts of a periplasmic cytochrome c were detected, as well as small amounts of a membrane-bound cytochrome b. All enzymes of the citric acid cycle were found to be present. The DNA base ratio was 48.3 mol% guanine plus cytosine. Since this new bacterium cannot be affiliated with any of the known genera and species, a new genus and species, Malonomonas rubra is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse, 3rd ed. Verlag Chemie, Weinheim, FRG

    Google Scholar 

  • Blenden DC, Goldberg HS (1965) Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900

    PubMed  CAS  Google Scholar 

  • Boonstra J, Huttunen MT, Konings WN, Kaback HR (1975) Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem 250:6792–6798

    PubMed  CAS  Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Article  CAS  Google Scholar 

  • Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288

    Article  CAS  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. II. Difference spectra. J Biol Chem 217:395–407

    PubMed  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate and succinate. Arch Microbiol 151:421–426

    CAS  Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • Diekert G, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and C. formicoaceticum. J Bacteriol 136:597–606

    PubMed  CAS  Google Scholar 

  • Dimroth P (1981) Characterization of a membrane-bound biotin-containing enzyme: oxaloacetate decarboxylase from Klebsiella aerogenes. Eur J Biochem 115:353–358

    Article  PubMed  CAS  Google Scholar 

  • Dixon GH, Kornberg HL (1959) Assay methods for key enzymes of the glyoxylate cycle. Biochem J 72:3P

    Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670

    PubMed  CAS  Google Scholar 

  • International Union of Biochemistry (ed) (1984) Enzyme nomenclature 1984. Academic Press, New York

    Google Scholar 

  • Kröger A (1974) Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim Biophys Acta 347:273–289

    Article  PubMed  Google Scholar 

  • Magee CM, Rodeheaver G, Edgerton MT, Edlich RF (1975) A more reliable Gram staining technic for diagnosis of surgical infections. Am J Surg 130:341–346

    Article  PubMed  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gaschromatographic analysis. Anal Chem 38:514–515

    Article  CAS  Google Scholar 

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Article  Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol I. Springer, Berlin Heidelberg New York, pp 279–289

    Google Scholar 

  • Procházková L (1959) Bestimmung der Nitrate im Wasser. Z Anal Chem 167:254–260

    Article  Google Scholar 

  • Schink B, Pfennig N (1982) Propionigenium modestum gen. nov. sp. nov., a new strictly anaerobic, nonsporing bacterium growing on succinate. Arch Microbiol 133:209–216

    Article  CAS  Google Scholar 

  • Smith RL, Strohmaier FE, Oremland RS (1985) Isolation of anaerobic oxalate-degrading bacteria from freshwater lake sediments. Arch Microbiol 141:8–13

    Article  CAS  Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Article  CAS  Google Scholar 

  • Stouthamer AG (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (ed) International review of biochemistry, microbial biochemistry, vol 21. University Park Press, Baltimore, pp 1–47

    Google Scholar 

  • Süßmuth R, Eberspächer J, Haag R, Springer W (1987) Biochemisch-mikrobiologisches Praktikum. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation of chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Weston JA, Knowles CJ (1973) A soluble CO-binding c-type cytochrome from the marine bacterium Beneckea natriegens. Biochim Biophys Acta 305:11–18

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate-reducer enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Zamenhoff S (1957) Preparation and assay of deoxyribonucleic acid from animal tissue. In: Methods in enzymology, vol 3, Colowick SP, Kaplan NO (eds), Academic Press, New York, pp 696–704

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehning, I., Schink, B. Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch. Microbiol. 151, 427–433 (1989). https://doi.org/10.1007/BF00416602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00416602

Key words

Navigation