Skip to main content
Log in

Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cell suspensions of Desulfovibrio vulgaris were found to catalyze, in the absence of sulfate, the complete conversion of 1 lactate to 1 acetate, 1 CO2, and 2 H2 (ΔG′0=-8.8 kJ/mol) and of 1 pyruvate to 1 acetate, 1 CO2, and 1 H2 (ΔG′0=-52 kJ/mol). Protonophores, the proton translocating ATPase inhibitor N,N′-dicyclohexylcarbodiimide, and arsenate specifically inhibited H2 formation from lactate but not from pyruvate. The results suggest that lactate oxidation to pyruvate and H2G′ 0=+43.2 kJ/mol) is energy driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    Google Scholar 

  • Bott M, Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem 168:407–412

    Google Scholar 

  • Bott M, Eikmanns B, Thauer RK (1986) Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur J Biochem 159:393–398

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brandis A, Thauer RK (1981) Growth of Desulfovibrio species on hydrogen and sulfate as sole energy source. J Gen Microbiol 126:249–252

    Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    Google Scholar 

  • Cassio F, Leao C, van Uden N (1987) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 53:509–513

    Google Scholar 

  • Chartrain M, Zeikus JG (1986) Microbial ecophysiology of whey biomethanation: Intermediary metabolism of lactose degradation in continuous culture. Appl Environ Microbiol 51:180–187

    Google Scholar 

  • Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Ecol 38:353–360

    Google Scholar 

  • Eikmanns B, Thauer RK (1984) Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch Microbiol 138:365–370

    Google Scholar 

  • Hellingwerf KJ, Konings WN (1985) The energy flow in bacteria: the main free energy intermediates and their regulatory role. Adv Microb Physiol 26:125–154

    Google Scholar 

  • Herr G (1982) Untersuchungen zur Elektronentransport-Phosphorylierung von Desulfovibrio vulgaris (Marburg) im zellfreien System. Diploma thesis, Fachbereich Biologie, Philipps-Universität Marburg

  • Heytler PG (1979) Uncouplers of oxidative phosphorylation. In: Fleischer S, Packer I (eds) Biomembranes, Methods in enzymology, vol LV. Academic Press, New York San Francisco London, pp 462–472

    Google Scholar 

  • Kay WW (1978) Transport of carboxylic acids. In: Rosen BP (ed) Bacterial transport. Marcel Dekker, New York Basel, pp 385–411

    Google Scholar 

  • Klingenberg M, Schollmeyer P (1960) Zur Reversibilität der oxydativen Phosphorylierung. Adenosintriphosphat-abhängige Atmungskontrolle und Reduktion von Diphosphopyridin-nucleotid in Mitochondrien. Biochem Z 333:335–350

    Google Scholar 

  • Konings WN (1985) Generation of metabolic energy by end-product efflux. Trends in Biochemical Sciences 10:317–319

    Google Scholar 

  • Kröger A, Schröder I, Paulsen J (1986) Direct and reversed electron transport in anaerobic bacteria. In: Dubourguier HC (eds) Biology of anaerobic bacteria. Elsevier Science Publishers, Amsterdam, pp 93–104

    Google Scholar 

  • Lang VJ, Leystra-Lantz C, Cook RA (1987) Characterization of the specific pyruvate transport system in Escherichia coli K-12. J Bacteriol 169:380–385

    Google Scholar 

  • Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol 159:843–849

    Google Scholar 

  • McInerney MJ, Bryant MP (1981) Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl Environ Microbiol 41:346–354

    Google Scholar 

  • Odom JM, Peck HD Jr (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50

    Google Scholar 

  • Odom JM, Peck HD Jr (1984) Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Ann Rev Microbiol 38:551–592

    Google Scholar 

  • Odom JM, Wall JD (1987) Properties of a hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774. J Bacteriol 169:1335–1337

    Google Scholar 

  • Ogata M, Yagi T (1986) Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F1. J Biochem 100:311–318

    Google Scholar 

  • Ogata M, Arihara K, Yagi T (1981) D-Lactate dehydrogenase of Desulfovibrio vulgaris. J Biochem 89:1423–1431

    Google Scholar 

  • Otto R, Sonnenberg ASM, Veldkamp H, Konings WN (1980) Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc Natl Acad Sci USA 77:5502–5506

    Google Scholar 

  • Pankhania IP, Gow LA, Hamilton WA (1986) The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate. J Gen Microbiol 132:3349–3356

    Google Scholar 

  • Paulsen J, Kröger A, Thauer RK (1986) ATT-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol 144:78–83

    Google Scholar 

  • Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Phil Trans R Soc Lond B 298:443–466

    Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge London New York

    Google Scholar 

  • Schonheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Solioz M (1984) Dicyclohexylcarbodiimide as a probe for proton translocating enzymes. Trends in Biochemical Sciences 9:309–312

    Google Scholar 

  • Stams AJM (1985) Ecophysiological aspects of the electron donor metabolism of sulfate-reducing bacteria. Doctoral thesis, University of Groningen

  • Stams AJM, Hansen TA (1982) Oxygen-labile L(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett 13:389–394

    Google Scholar 

  • Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbes 1984: Part II. Prokaryotes and eukaryotes. Symposia of the Society for General Microbiology 36, pp 123–168

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Traore AS, Fardeau ML, Hatchikian CE, LeGall J, Belaich J-P (1983) Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: interspecies hydrogen transfer in batch and continuous cultures. Appl Environ Microbiol 46:1152–1156

    Google Scholar 

  • Traore AS, Hatchikian CE, Belaich J-P, LeGall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–199

    Google Scholar 

  • Tsuji K, Yagi T (1980) Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris, Miyazaki, and the role of hydrogenase and cytochrome c3 in energy production system. Arch Microbiol 125:35–42

    Google Scholar 

  • Vogel G, Steinhart R (1976) ATPase of Escherichia coli: Purification, dissociation, and reconstitution of the active complex from the isolated subunits. Biochemistry 15:208–216

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB (ed) Environmental microbiology of anaerobes, chapter 10. John Wiley and Sons, New York London (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankhania, I.P., Spormann, A.M., Hamilton, W.A. et al. Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch. Microbiol. 150, 26–31 (1988). https://doi.org/10.1007/BF00409713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409713

Key words

Navigation