Skip to main content
Log in

Transport-limited growth in the chemostat and its competitive inhibition; A theoretical treatment

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

An equation expressing the specific growth rate of heterotrophic cell populations in terms of yield factor and transport rate is proposed. From this equation expressions are derived for the specific growth rate when the transport of the energy source is growth0limiting. These expressions are applied to cell population growth in the chemostat limited by the transport of the energy source or of other substrates and simple mathematical tools are provided for obtaining estimates of the transport parameters. An equation is derived which predicts that at constant dilution rate in the chemostat the concentration of any substrate (whether or not the source of energy) the transport of which is growth limiting, is a linear function of the concentration of a competitive inhibitor of its transport. With this equation estimates of the Michaelis constants of competitive transport inhibitors can be obtained. The growth rate equation of Monod (1942) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Button, D. K., and J. C. Garver: Continuous culture of Torulopsis utilis: a kinetic study of oxygen limited growth. J. gen. Microbiol. 45, 195–204 (1966).

    PubMed  Google Scholar 

  • Cirillo, V. P.: Mechanism of glucose transport across the yeast cell membrane. J. Bact. 84, 485–491 (1962).

    PubMed  Google Scholar 

  • Cohen, G. N., and J. Monod: Bacterial permeases. Bact. Rev. 21, 169–194 (1957).

    PubMed  Google Scholar 

  • Herbert, D.: Some principles of continuous culture. Int. Congr. Microbiol. No. 7 (Stockholm), p. 372 (1958).

  • Herbert, D.: A theoretical analysis of continuous culture systems. In Continuous culture of micro-organisms. Soc. Chem. Ind. Monogr. No. 12, pp. 21–53 (1961).

  • —: The chemical composition of micro-organisms as a function of their environment. Symp. Soc. gen. Microbiol. 11, 391–416 (1961).

    Google Scholar 

  • —, and R. C. Telling: The continuous culture of bacteria: a theoretical and experimental study. J. gen. Microbiol. 14, 601–622 (1956).

    PubMed  Google Scholar 

  • Kepes, A., and G. N. Cohen: Permeation. In: Gunsalus, I. C., and R. Y. Stanier: The Bacteria, Vol. IV, pp. 179–221. New York and London: Academic Press 1962.

    Google Scholar 

  • Kotyk, A., and M. Höfer: Uphill transport of sugars in the yeast Rhodotorula gracilis. Biochim. biophys. Acta (Amst.) 102, 410–422 (1965).

    Google Scholar 

  • Mandelstam, J.: Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110–119 (1958).

    PubMed  Google Scholar 

  • —: The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bact. Rev. 24, 289–308 (1960).

    PubMed  Google Scholar 

  • —, and H. Halvorson: Turnover of proteins and nucleic acid in soluble and ribosome fractions of non-growing Escherichia coli. Biochim. biophys. Acta (Amst.) 40, 43–49 (1960).

    Article  Google Scholar 

  • Marr, A. G., E. H. Nilson, and D. J. Clark: The maintenance requirement of Escherichia coli. Ann. N. Y. Acad. Sci. 144, 536–548 (1963).

    Google Scholar 

  • Monod, J.: Recherches sur la croissance des cultures bacteriénnes. Paris: Hermann et Cie, 1942.

    Google Scholar 

  • —: La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950).

    Google Scholar 

  • Novick, A., and L. Csilard: Description of the chemostat. Science 112, 715 (1950).

    PubMed  Google Scholar 

  • Pfennig, N., u. H. W. Jannasch: Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen. Ergebn. Biol. 25, 93–135 (1962).

    PubMed  Google Scholar 

  • Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. roy Soc. B 163, 224–231 (1965).

    Google Scholar 

  • Postgate, J. R., and J. R. Hunter: The survival of starved bacteria. J. gen. Microbiol. 29, 233–263 (1962).

    PubMed  Google Scholar 

  • Powell, E. O.: Growth rate and generation time of bacteria with special reference to continuous culture. J. gen. Microbiol. 15, 492–511 (1956).

    PubMed  Google Scholar 

  • Schaechter, M., O. Maaløe, and N. O. Kjeldgaard: Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. gen. Microbiol. 19, 592–606 (1958).

    PubMed  Google Scholar 

  • Schulze, K. I., and R. S. Lipe: Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture. Arch. Mikrobiol. 48, 1–20 (1964).

    Google Scholar 

  • Tempest, D. W., and J. R. Hunter: Influence of temperature on the macromolecular composition of C (glycerol)-limited and Mg2+-limited Aerobacter aerogenes, growing in a chemostat. J. gen. Microbiol. 39, 6 (1965).

    Google Scholar 

  • Uden, N. van: Transport-limited fermentation and growth of S. cerevisiae and its competitive inhibition. Arch. Mikrobiol. 58, 155–168 (1967).

    PubMed  Google Scholar 

  • —, and J. Fell: Marine Yeasts. In: Droop, M., and E. J. Ferguson Wood: Advances in the Microbiology of the Sea. New York: Academic Press 1967.

    Google Scholar 

  • Wase, D. A. J., and J. S. Hough: Continuous culture of yeast on phenol. J. gen. Microbiol. 42, 13–23 (1966).

    PubMed  Google Scholar 

  • Wilbrandt, W., and T. Rosenberg: The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13, 109–183 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Uden, N. Transport-limited growth in the chemostat and its competitive inhibition; A theoretical treatment. Archiv. Mikrobiol. 58, 145–154 (1967). https://doi.org/10.1007/BF00406675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406675

Keywords

Navigation