Skip to main content
Log in

A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium

  • Short Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A heteronuclear correlation experiment is described which permits simultaneous characterization of both 15N longitudinal decay rates and slow conformational exchange rates. Data pertaining to the exchange between folded and unfolded forms of an SH3 domain is used to illustrate the technique. Because the unfolded form of the molecule, on average, shows significantly higher NH exchange rates than the folded form, and approach which minimizes the degree of water saturation is employed, enabling the extraction of accurate rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • BaxA. and DavisD. (1985) J. Magn. Reson., 63, 207–213.

    Google Scholar 

  • BaxA. and PochapskyS. (1992) J. Magn. Reson., 99, 638–643.

    Google Scholar 

  • Bothner-ByA.A., StephensR.L., LeeJ., WarrenC.D. and JeanlozR.W. (1984) J. Am. Chem. Soc., 106, 811–813.

    Google Scholar 

  • BoydJ., HommelU. and CampbellI.D. (1990) Chem. Phys. Lett., 175, 477–482.

    Article  Google Scholar 

  • CavanaghJ., PalmerA.G., WrightP.E. and RanceM. (1991) J. Magn. Reson., 91, 429–435.

    Google Scholar 

  • ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, p. 492.

    Google Scholar 

  • ForsenS. and HoffmanR.A. (1963) J. Chem. Phys., 39, 2892–2901.

    Google Scholar 

  • GrzesiekS. and BaxA. (1993a) J. Am. Chem. Soc., 115, 12593–12594.

    Google Scholar 

  • GrzesiekS. and BaxA. (1993b) J. Biomol. NMR, 3, 185–204.

    PubMed  Google Scholar 

  • GutowskyH.S., McCallD.W. and SlichterC.P. (1953) J. Chem. Phys., 21, 279–292.

    Google Scholar 

  • GutowskyH.S. and SaikaA. (1953) J. Chem. Phys., 21, 1688–1694.

    Google Scholar 

  • HahnE.L. and MaxwellD.E. (1952) Phys. Rev., 88, 1070–1084.

    Article  Google Scholar 

  • HullW.E. and SykesB.D. (1975) J. Chem. Phys., 63, 867–880.

    Article  Google Scholar 

  • JohnB.K., PlantD., WebbP. and HurdR.E. (1992) J. Magn. Reson., 98, 200–206.

    Google Scholar 

  • KamathU. and ShriverJ.W. (1989) J. Biol. Chem., 264, 5586–5592.

    PubMed  Google Scholar 

  • KayL.E., TorchiaD.A. and BaxA. (1989) Biochemistry, 28, 8972–8979.

    PubMed  Google Scholar 

  • KayL.E., NicholsonL.K., DelaglioF., BaxA. and TorchiaD.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • Kay, L.E., Xu, G.Y. and Yamazaki, T. (1994) J. Magn. Reson. Ser. A, in press.

  • LoganT.M., OlejniczakE.T., XuR.X. and FesikS.W. (1993) J. Biomol. NMR, 3, 225–231.

    Article  PubMed  Google Scholar 

  • MacuraS. and ErnstR.R. (1980) Mol. Phys., 41, 95–117.

    Google Scholar 

  • MarionD., IkuraM., TschudinR. and BaxA. (1989) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • McConnellH.M. (1958) J. Chem. Phys., 28, 430–431.

    Google Scholar 

  • McCoyM. and MuellerL. (1992) J. Am. Chem. Soc., 114, 2108–2112.

    Google Scholar 

  • MontelioneG.T. and WagnerG. (1989) J. Am. Chem. Soc., 111, 3096–3098.

    Google Scholar 

  • MorrisG.A. and FreemanR. (1979) J. Am. Chem. Soc., 101, 760–762.

    Google Scholar 

  • OttingG., LiepinshE. and WüthrichK. (1993) Biochemistry, 32, 3571–3582.

    PubMed  Google Scholar 

  • PalmerIIIA.G., RanceM. and WrightP.E. (1991a) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • PalmerIIIA.G., CavanaghJ., WrightP.E. and RanceM. (1991b) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • PalmerIIIA.G., SkeltonN.J., ChazinW.J., WrightP.E. and RanceM. (1992) Mol. Phys., 75, 699–711.

    Google Scholar 

  • PiottoM., SaudekV. and SklenarV. (1992) J. Biomol. NMR, 2, 661–665.

    PubMed  Google Scholar 

  • ShakaA.J., KeelerJ., FrenkielT. and FreemanR. (1983) J. Magn. Reson., 52, 335–338.

    Google Scholar 

  • SklenarV., TorchiaD.A. and BaxA. (1987) J. Magn. Reson., 73, 375–379.

    Google Scholar 

  • SmallcombeS. (1993) J. Am. Chem. Soc., 15, 4776–4785.

    Google Scholar 

  • WiderG., NeriD. and WüthrichK. (1991) J. Biomol. NMR, 1, 93–98.

    Google Scholar 

  • Zhang, O. and Forman-Kay, J.D. (1994) Biochemistry, submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrow, N.A., Zhang, O., Forman-Kay, J.D. et al. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J Biomol NMR 4, 727–734 (1994). https://doi.org/10.1007/BF00404280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404280

Key words

Navigation