Skip to main content
Log in

A pulsing device for packed-bed bioreactors: I. Hydrodynamic behaviour

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This paper describes a new pulsing device which permits the insertion in pulsing form of a liquid phase fed into an equipment where a microbial or enzymatic transformation occurs. It also analyzes the modifications of the flow model caused by the pulsation generated by means of three kinds of pulsators: A hydropneumatic pulsator, a selfpropelled pulsator and a newly designed elastic membrane pulsator.

The hydrodynamic behaviour of a packed-bed column, to which each of these pulsators has been connected is compared with the correspondent system without pulsation. The flow model is determined by the study of the curves of residence times distribution, obtained by using a stimulus-response technique. A computer programme has been used to determine the axial dispersion coefficients from the response curves. In all cases we worked within a wide range of Re p(10–215).

The pneumatic pulsing device causes a backmixing in the system due to the alternative movement that communicates to the fluid contained in the column. The application of the pulsation by means of the selfpropelled injector or the elastic membrane pulsator reduces the axial dispersion coefficient in regard to those corresponding to the system without pulsation, a fact which becomes even more significant when operating at high flow velocities. For the study of the hydraulic model of the pulsing system of elastic membrane we worked under different conditions in order to determine the effect of the particle's diameter, the viscosity, and the frequency of pulsation. At the same frequency at which the Re pincreases, the axial dispersion coefficient also increases, following in all cases an almost linear tendency. For the same Re p, the dispersion coefficient decreases when the particle diameter increases. On the other hand, the dispersion coefficients obtained for a fluid of a viscosity of 2 cp are, in some cases, up to 3 times higher than the corresponding values for water.

All the results indicate that the new pulsator is specially applicable to reactors which, as in many biological transformations, present inhibitory problems by the product, or, in general, to those reactions that require that the flow model in the reactor be a plug flow model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a m:

pulsation amplitude

C M:

tracer concentration

d m:

internal diameter of the reactor

D m2/s:

axial dispersion coefficient

f Hz:

pulsation frequency

h m:

height of liquid in the pulsation branch

L m:

reactor length

Pe :

Peclet number (u · L/D)

q l/h:

pulsed liquid flow rate

Q l/h:

overall/liquid flow rate

t s s:

shutting time of the valve

t 0 s:

opening time of the valve

Re p :

Reynolds number for packed-bed

$$Re_p = \frac{1}{{1 - \varepsilon }} \cdot \frac{{\left\langle v \right\rangle d_p \cdot \rho }}{\mu }$$
x m:

axial direction

w l/h:

continuous liquid flow rate

u m/s:

average interstitial velocity

gu〉 m/s:

average velocity referred to the empty column

d p m:

particle diameter

ε :

void fraction

φ i mm:

pulsation branch diameter

σ 2 s 2 :

variance

μ cp:

liquid viscosity

ρ kg/m3 :

liquid density

θ :

dimensionless time

τ s:

mean residence time

References

  1. Van Dijck, W. J. D.: Tower with internal perforated plates suitable for extracting liquid by treatment with other liquids and for similar countercurrent contact processes. U.S Patent 2,011,186, Aug, 13 (1935)

  2. Baird, M. H. I.; Rao, N. V. R.: Characteristic of a counter current reciprocating plate bubble column. II. Axial mixing and mass transfer. Can. J. Chem. Eng. 66 (1988) 222–231

    Google Scholar 

  3. Brauer, H.; Sucker, D.: Biological waste water treatment in a high efficiency reactor. Ger. Chem. Eng. 2 (1979) 77–86

    Google Scholar 

  4. Prabhakar, A.; Srinikhetan, G.; Varma, Y. B. G.: Dispersed phase holdup and drop size distribution in pulsed plate columns. Can. J. Chem. Eng. 66 (1988) 232–240

    Google Scholar 

  5. Skala, D.; Veljkovic, V.: Mass transfer characteristics in a gas-liquid reciprocating plate column. I. Liquid phase volumetric mass transfer coefficient. Can. J. Chem. Eng. 66 (1988) 192–199

    Google Scholar 

  6. Ghommidh, J. H.; Navarro, J. M.; Durand, G.: A study of acetic acid production by immobilized Acetobacter cells: Oxygen transfer. Biotechnol. Bioeng. 24 (1982) 605–617

    Google Scholar 

  7. Harrison, S. T. L.; Mackley, M. R.: A pulsatile flow bioreactor. Chem. Eng. Sci. 47 (1992) 490–493

    Google Scholar 

  8. Minier, M.; Goma, G.: Ethanol production by extractive fermentation. Biotechnol. Bioeng. 24 (1982) 1565–1579

    Google Scholar 

  9. Mak, A. N. S.; Hamersma, P. J.; Fortuin, J. M. H.: Solids holdup and axial dispersion during countercurrent solid-liquid contacting in a pulsed packed column containing structured packing. Chem. Eng. Sci. 47 (1992) 565–577

    Google Scholar 

  10. Murthy, V. V. P. S.; Ramachandran, K. B.; Ghose, T. K.: Gas hold-up and power consumption in an air-pulsed column bioreactor. Process Biochem. 22 (1987) 3–8

    Google Scholar 

  11. Navarro, J. M.; Goma, G.: Nouveau dispositif de mise en oeuvre des microorganismes. French Patent N∘78 28572 (1980)

  12. Bailes, P. J.; Hanson, C.; Hughes, M. A.: Liquid-liquid extraction: The process and the equipment. Chem. Eng. 83 (1976) 86–100

    Google Scholar 

  13. Srinikhetan, G.; Prabhakar, A.; Varma, Y. B. G.: Axial dispersion in plate-pulsed columns. Bioprocess Eng. 2 (1987) 161–168

    Google Scholar 

  14. Baird, M. H. I.; Vijayan, S.; Rao, N. V. R.; Rohatgi, A.: Extraction and absorption with a vibrating perforating plate. Can. J. Chem. Eng. 67 (1989) 787–800

    Google Scholar 

  15. Miñana, A.; Rubio, M.; Albentosa, J.: Aplicación de pulsación neumática y flujo de aire a una columna de extracción líquidolíquido. Afinidad. 42 (1985) 407–415

    Google Scholar 

  16. Golding, J. A.; Lee, J.: Recovery and separation of cobalt and nickel in a pulsed sieve-plate extraction column. Ind. Eng. Chem. Process. Des. Dev. 20 (1981) 256–261

    Google Scholar 

  17. Göebel, J. C.; Fortuin, J. M. H.: Solids holdup in a pulsed packed column used for solid-liquid contacting. Chem. Eng. Sci. 41 (1986) 2531–2539

    Google Scholar 

  18. Yang, N. S.; Chen, B. H.; McMillan, A. F.: Axial mixing and mass transfer in gas-liquid Karr columns. Ind. Eng. Chem. Process Des. Dev. 25 (1986) 776–780

    Google Scholar 

  19. Yang, N. S.; Shen, Z.-Q.; Chen, B. H.; McMillan, A. F.: Pressure drop, gas holdup and interfacial area for gas-liquid contact in Karr columns. Ind. Eng. Chem. Process Des. Dev. 25 (1986) 660–664

    Google Scholar 

  20. Baird, M. H. I.; Garstang, J. H.: Gas absorption in a pulsed bubble column. Chem. Eng. Sci. 27 (1972) 823–833

    Google Scholar 

  21. Finnigan, S. M.; Howell, J. A.: The effect of pulsatile flow on Ultrafiltration fluxes. Chem. Eng. Res. Des. 67 (1989) 278–282

    Google Scholar 

  22. Serieys, M.; Goma, G.; Durand, G.: Design and oxygen-transfer potential of a pulsed continuous tubular fermentor. Biotechnol. Bioeng. 20 (1978) 1393–1406

    Google Scholar 

  23. Dondé, M.; Goma, G.; Durand, G.: Transfer oxygen potential of an air-pulsed continuous fermentor. Biotechnol. Process 4 (1987) 135–141

    Google Scholar 

  24. Murthy, V. V. P. S.; Ramachandran, K. B.; Ghose, T. K.: Oxygen transfer studies in an air-pulsed column bioreactor. Process Biochem. 24 (1989) 77–83

    Google Scholar 

  25. Hwang, K.-Y.; Brauer, H.: Anaerobe Abwasserreinigung mit Biogasproduktion im Pulsreaktor. BTF-Biotech-Forum. 4 (1987) 118–130

    Google Scholar 

  26. Brauer, H.; Annachhatre, A. P.: Nitrification and denitrification in a system of reciprocating jet bioreactor. Bioprocess Eng. 7 (1992) 269–275

    Google Scholar 

  27. Brauer, H.; Annachhatre, A. P.: Wastewater nitrification kinetics using reciprocating jet bioreactor. Bioprocess Eng. 7 (1992) 277–286

    Google Scholar 

  28. Brauer, H.: Growth of fungi and bacteria in the reciprocating jet bioreactor. Bioprocess Eng. 6 (1991) 1–15

    Google Scholar 

  29. Etzold, M.; Stadlbauer, E. A.: Design and operation of pulsed anaerobic digesters. Bioprocess Eng. 5 (1990) 7–12

    Google Scholar 

  30. Lema, J. M.; Núñez, M. J.; Sanromán, A.; Roca, E.: Dispositivo de pulsación para ser acoplado a equipos de fermentación, reactores enzimáticos o reactores químicos. Spanish Patent N∘P9200315 (1992)

  31. Baltar, C.: Dispositivo para la producción de fenómenos de pulsación en masas fluidas. Spanish Patent N∘443893 (1972)

  32. Levenspiel, O.: Chemical Reaction Engineering. pp. 217–297. New York, Wiley 1983

    Google Scholar 

  33. Bouzas, S.; Casares, J. J.; Lema, J. M.: Análisis de reactores de flujo no ideal. I. Tratamiento de las curvas de trazador. Ingeniería Química. 234 (1988) 209–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roca, E., Sanromán, A., Núñez, M.J. et al. A pulsing device for packed-bed bioreactors: I. Hydrodynamic behaviour. Bioprocess Engineering 10, 61–73 (1994). https://doi.org/10.1007/BF00393388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393388

Keywords

Navigation