Skip to main content
Log in

The mechanism of stomatal action

  • Published:
Planta Aims and scope Submit manuscript

Summary

Recent reviews have denied the applicability of the classical theory of stomatal movement. The newer explanations are shown to be incorrect, and the major objections to the classical theory invalid. Nevertheless, the classical theory needs to be modified. If the decisive factor is assumed to be carboxylic acid (RCOOH) rather than CO2 concentration, all the known facts can be explained. Two predictions of this modified classical theory were vindicated. The proposed relationship of stomatal opening to RCOOH concentration is illustrated schematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archbold, H. K.: Fructosans in the monocotyledons. A review. New Phytologist 39, 185–219 (1940).

    Google Scholar 

  • Benson, A. A., M. Calvin, V. A. Haas, S. Aronoff, A. G. Hall, S. A. Bassham, and J. W. Weigl: C14 in photosynthesis. In: Photosynthesis in plants (J. Franck and W.E. Loomis, eds.), p. 381–402. Ames, Iowa: Iowa State College Press 1949.

    Google Scholar 

  • Bieleski, R. L.: Accumulation of phosphate, sulfate and sucrose by excised phloem tissue. Plant Physiol. 41, 447–454 (1966).

    Google Scholar 

  • Bruinsma, J.: Studies on the Crassulacean acid metabolism. Acta bot. neerl. 7, 531–590 (1958).

    Google Scholar 

  • Dixon, M., and E. C. Webb: Enzymes. New York: Academic Press 1963.

    Google Scholar 

  • Ewart, M. H., D. Siminovitch, and D. R. Briggs: Studies on the chemistry of the living bark of the black locust tree in relation to frost hardiness. VI. Amylase and phosphorylase systems of the bark tissue. Plant Physiol. 28, 629–644 (1953).

    Google Scholar 

  • Gibbs, M.: Carbohydrates: their role in plant metabolism and nutrition. In: Plant physiol (F. C. Steward, ed.), vol. IV B, p. 3–115. New York, London: Academic Press 1966.

    Google Scholar 

  • Glinka, Z., and L. Reinhold: Rapid changes in permeability of cell membranes to water brought about by carbon dioxide and oxygen. Plant Physiol. 37, 481–486 (1962).

    Google Scholar 

  • Heath, O. V. S., T. A. Mansfield, and H. Meidner: Light-induced stomatal opening and the postulated role of glycollic acid. Nature (Lond.) 207, 960–962 (1965).

    Google Scholar 

  • —, and B. Orchard: Studies in stomatal behavior. VII. Effects of anaerobic conditions upon stomatal movement — a test of Williams' hypothesis of stomatal mechanism. J. exp. Bot. 7, 315–325 (1956).

    Google Scholar 

  • Ketellapper, H. J.: Stomatal physiology. Ann. Rev. Plant Physiol. 14, 249–270 (1963).

    Article  Google Scholar 

  • Leloir, L. F., M. A. Rongine de Fereti and C. E. Cardini: Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. biol. Chem. 236, 636–641 (1961).

    PubMed  Google Scholar 

  • Levitt, J.: Thermodynamics of active water absorption. Plant Physiol. 22, 514–525 (1947).

    Google Scholar 

  • —: Further remarks on the thermodynamics of active (non-osmotic) water absorption. Physiol. Plantarum (Kbh.) 6, 240–252 (1953).

    Google Scholar 

  • —: Steady state versus equilibrium thermodynamics in the concept of “active” water absorption. Physiol. Plantarum (Kbh.) 7, 592–594 (1954).

    Google Scholar 

  • —: Do plants absorb water against a gradient? Eighth Internat. Bot. Congr. 11, 213–215 (1954).

    Google Scholar 

  • Meidner, H., and T. A. Mansfield: Stomatal responses to illumination. Biol. Rev. 40, 483–509 (1965).

    Google Scholar 

  • Newman, E. I., and P. J. Kramer: Effects of decenylsuccinic acid on the permeability and growth of bean roots. Plant Physiol. 41, 606–609 (1966).

    Google Scholar 

  • Nishida, K.: Studies on stomatal movement of crassulacean plants in relation to the acid metabolism. Physiol. Plantarum (Kbh.) 16, 281–298 (1963).

    Google Scholar 

  • Ordin, L., T. H. Applewhite, and J. Bonner. Auxin-induced water uptake by Avena coleoptile sections. Plant Physiol. 31, 44–53 (1956).

    Google Scholar 

  • Scarth, G. W., and M. Shaw: Stomatal movement and photosynthesis in Pelargonium. II. Effects of water deficit and of chloroform: photosynthesis in guard cells. Plant Physiol. 26, 581–597 (1951).

    Google Scholar 

  • Siegenthaler, P.-A., and L. Packer: Light-dependent volume changes and reactions in chloroplasts. I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control. Plant Physiol. 40, 785–791 (1965).

    PubMed  Google Scholar 

  • Stålfelt, M. G.: Die stomatäre Transpiration und die Physiologie der Spaltöffnungen. In: Handbuch der Pflanzenphysiologie, Bd. 3, S. 351–426, Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Thimann, K. V., and E. W. Samuel: The permeability of potato tissue to water. Proc. nat. Acad. Sci. (Wash.) 41, 1029–1033 (1955).

    Google Scholar 

  • Williams, W. T.: A new theory of the mechanism of stomatal movement. J. exp. Bot. 5, 343–352 (1954).

    Google Scholar 

  • Zelitch, I.: Biochemical control of stomatal opening in leaves. Proc. nat. Acad. Sci. (Wash.) 47, 1423–1433 (1961).

    Google Scholar 

  • —: Environmental and biochemical control of stomatal movement in leaves. Biol. Rev. 40, 463–482 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitt, J. The mechanism of stomatal action. Planta 74, 101–118 (1967). https://doi.org/10.1007/BF00388323

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388323

Keywords

Navigation