Skip to main content
Log in

The source and lateral transport of growth inhibitors in geotropically stimulated roots of Zea mays and Pisum sativum

  • Published:
Planta Aims and scope Submit manuscript

Summary

The positive geotropic responses of the primary roots of Zea mays and Pisum sativum seedlings depend upon at least one growth inhibiting factor which arises in the root cap and which moves basipetally through the apex into the extending zone. The root apex (as distinct from the cap) and the regions more basal to the extending zone are not sources of growth regulators directly involved in the geotropic response. A difference in the concentration or effectiveness of the inhibitory factor(s) arising in the cap must be established between the upper and lower halves of a horizontal root. Positive geotropic curvature in a horizontal root is attributable, at least in part, to a downward lateral transport of inhibitor(s) from the upper to the lower half of the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Audus, L. J.: Geotropism. In: The physiology of plant growth and development, p. 205–242, ed. M. B. Wilkins. London: McGraw-Hill 1969.

    Google Scholar 

  • Audus, L. J.: Linkage between detection and the mechanisms establishing differential growth factor concentrations. Proc. Symp. on Gravity and the organism. Tuxedo, New York (1967), p. 137–150, eds. S. A. Gordon and M. J. Cohen. Chicago: University of Chicago Press 1971.

    Google Scholar 

  • Audus, L. J., Brownbridge, M. E.: Studies on the geotropism of roots. I. Growth rate distribution during response and the effects of applied auxins. J. exp. Bot. 8, 105–124 (1957).

    Google Scholar 

  • Bennet-Clark, T. A., Younis, A. F., Esnault, R.: Geotropic behaviour of roots. J. exp. Bot. 10, 69–86 (1959).

    Google Scholar 

  • Cerkek, L.: Effect of X-radiation on regeneration and geotropic function of barley root caps. Int. J. Radiat. Biol. 17, 187–194 (1970).

    Google Scholar 

  • Darwin, C., Darwin, F.: The power of movement in plants. London: Appleton & Co. 1880.

    Google Scholar 

  • Gibbons, G. S. B., Wilkins, M. B.: Growth inhibitor production by root caps in relation to geotropic responses. Nature (Lond.) 226, 558–559 (1970).

    Google Scholar 

  • Hawker, L. E.: Experiments on the perception of gravity by roots. New Phytologist 31, 321–328 (1932).

    Google Scholar 

  • Juniper, B. E., Groves, S., Landau-Schachar, B., Audus, L. J.: Root cap and the perception of gravity. Nature (Lond.) 209, 93–94 (1966).

    Google Scholar 

  • Keeble, F., Nelson, M. G.: The integration of plant behaviour. V. Growth substance and traumatic curvature of the root. Proc. roy. Soc. B117, 92–119 (1935).

    Google Scholar 

  • Keeble, F., Nelson, M. G., Snow, R.: The integration of plant behaviour. IV. Geotropism and growth substances. Proc. roy. Soc. B108, 537–545 (1931).

    Google Scholar 

  • Konings, H.: On the indoleacetic acid converting enzyme of pea roots and its relation to geotropism, straight growth and cell wall properties. Acta. Bot. Neerl. 13, 566–622 (1964).

    Google Scholar 

  • Konings, H.: The significance of the root cap for geotropism. Acta. Bot. Neerl. 17, 203–211 (1968).

    Google Scholar 

  • Larsen, P.: Influence of gravity on rate of elongation and on geotropic and autotropic reactions in roots. Physiol. Plantarum (Cph.) 6, 735–774 (1953).

    Google Scholar 

  • Pilet, P. E.: Root cap and georeaction. Nature (Lond.) 233, 115–116 (1971a).

    Google Scholar 

  • Pilet, P. E.: Rôle de l'apex radiculaire dans la croissance, le géotropisme et le transport des auxines. Bull. Soc. Bot. suisse 81, 52–65 (1971b).

    Google Scholar 

  • Pilet, P. E.: Root cap and root growth. Planta (Berl.) 106, 169–172 (1972).

    Google Scholar 

  • Sachs, J. von: Über das Wachstum der Haupt- und Nebenwurzeln. Arb. bot. Inst. Würzburg 1, 385–474 (1874).

    Google Scholar 

  • Scott, T. K., Wilkins, M. B.: Auxin transport in roots. II. Polar flux of IAA in Zea roots. Planta (Berl.) 83, 323–334 (1968).

    Google Scholar 

  • Scott, T. K., wilkins, M. B.: Auxin transport in roots. IV. Effects of light on IAA movement and geotropic responsiveness in Zea roots. Planta (Berl.) 87, 249–258 (1969).

    Google Scholar 

  • Shaw, S.: Hormone transport in relation to the geotropic response of roots. Ph. D. Thesis of the University of Nottingham (1972).

  • Snow, R.: The conduction of geotropic excitation in roots. Ann. Bot. 37, 43–53 (1923).

    Google Scholar 

  • Snow, R.: Further experiments on the conduction of tropic excitation. Ann. Bot. 38, 163–174 (1924).

    Google Scholar 

  • Spalding, V. M.: The trauma-tropic curvature of roots. Ann. Bot. 8, 423–451 (1894).

    Google Scholar 

  • Syre, H.: Untersuchungen über Statolithenstärke und Wuchsstoff an vorbehandelten Wurzeln. Z. Bot. 33, 129–182 (1938).

    Google Scholar 

  • Younis, A. F.: Experiments on the growth and geotropism of roots. J. exp. Bot. 5, 357–372 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, S., Wilkins, M.B. The source and lateral transport of growth inhibitors in geotropically stimulated roots of Zea mays and Pisum sativum . Planta 109, 11–26 (1973). https://doi.org/10.1007/BF00385449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385449

Keywords

Navigation