Skip to main content
Log in

Drought relations of shrub species: assessment of the mechanisms of drought resistance

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Relatively static factors such as depth of rooting and cuticular conductance and relatively dynamic factors such as stomatol control and changes in the components of water potential were used to assess the drought resistance characteristics of six deciduous shrub species. Predawn water potential during a prolonged drought averaged-2.13 and-3.51 MPa in species known to have deep and shallow patterns of rooting, respectively. It is thus surprising that the osmotic potential at the turgor loss point averaged only-3.01 MPa in the shallow rooted group. The water potential at which irreversible cell damage occurred was the same in both groups (-4.9 MPa), and minimum values observed in the field never dropped below-4.0 MPa. There was, however, a pronounced difference between the two groups with regard to stomatal behavior. This allowed us to characterize the deep-rooted species as avoiders of stress which would cause prolonged stomatal closure whereas the shallow-rooted species had to tolerate prolonged periods of closed stomata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Duhme F (1974) Die Kennzeichnung der ökologischen Konstitution von Gehölzen im Hinblick auf den Wasserhaushalt. Dissertationes Botanicae 28. J. Cramer, Lehre p 143

  • Ehrendorfer F, Kaltenbach A, Niklfeld H, Starmühlner F (1972) Naturgeschichte Wiens. Vol. II: Naturnahe Landschaften, Pflanzen- und Tierwelt. Jugend und Volk, Wien München p 909

    Google Scholar 

  • Eliás P (1978) Water deficit of plants in an oak-hornbeam forest. Preslia 50:173–188

    Google Scholar 

  • Hempel G, Wilhelm K (1893) Die Bäume und Sträucher des Waldes in botanischer und forstwirtschaftlicher Beziehung. Verlag Ed. Hölzel Wien und Olmütz

    Google Scholar 

  • Hinckley TM, Lassoie JP, Running SW (1978) Temporal and spatial variations in the water status of forest trees. Forest Sci Monogr 20:1–72

    Google Scholar 

  • Hinckley TM, Duhme F, Hinckley AR, Richter H (1980) Water relations of drought hardy shrubs: osmotic potential and stomatal reactivity. Plant, Cell and Environ 3:131–140

    Google Scholar 

  • Hinckley TM, Teskey RO, Duhme F, Richter H (1981) Temperate Hardwood Forests. In: Water Deficits and Plant Growth, Vol VI Kozlowski TT (ed), Academic Press, New York and London pp 153–208

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Google Scholar 

  • Huzulák J (1980) Water relations of Crataegus oxyacantha, Cornus mas and Ligustrum vulgare. Biologia 35:39–46

    Google Scholar 

  • Karlic H, Richter H (1983) Developmental effects on leaf water relations of two evergreen shrubs (Prunus laurocerasus L. and Ilex aquifolium L.). Flora 173:143–150

    Google Scholar 

  • Körner C, Cernusca A (1976) A semi-automatic, recording diffusion porometer and its performance under alpine field conditions. Photosynthetica 10:172–181

    Google Scholar 

  • Larcher W (1960) Transpiration and photosynthesis of detached leaves and shoots of Quercus pubescens and Q. ilex during desiccation under standard conditions. Bull Res Council of Israel, 8 D, 213–224

    Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York and London, pp 697

    Google Scholar 

  • Lucier AA, Hinckley TM (1982) Phenology, growth and water relations of irrigated and non-irrigated black walnut. Forest Ecology & Manage 4:127–142

    Google Scholar 

  • Oberdorfer E (1979) Pflanzensoziologische Exkursionsflora. 4th edition. Ulmer, Stuttgart

    Google Scholar 

  • Oppenheimer HR (1932) Zur Kenntnis der hochsommerlichen Wasserbilanz mediterraner Gewächse. Ber deutsch bot Ges 50a, 185–245

  • Oppenheimer HR (1963) Zur Kenntnis kritischer Wassersättigungsdefizite in Blättern und ihrer Bestimmung. Planta 60:51–69

    Google Scholar 

  • Pezeshki SR, Hinckley TM (1982) The stomatal response of red alder and black cottonwood to changing water status. Can J For Res 12:761–771

    Google Scholar 

  • Pisek A, Berger E (1938) Kutikuläre Transpiration und Trockenresistenz isolierter Blätter und Sprosse. Planta 28:124–155

    Google Scholar 

  • Pisek A, Winkler E (1953) Die Schließbewegung der Stomata bei ökologisch verschiedenen Pflanzentypen in Abhängigkeit vom Wassersättigungszustand der Blätter und vom Licht. Planta 42:253–278

    Google Scholar 

  • Richter H (1978) A diagram for the description of water relations in plant cells and organs. J of Exp Bot 29:1197–1203

    Google Scholar 

  • Ritchie GA, Hinckley TM (1975) The pressure chamber as an instrument for ecological research. In: Advances in Ecological Research Vol 9 Macfadyen A (ed) Academic Press, New York and London pp 165–254

    Google Scholar 

  • Roberts SW, Knoerr KR (1977) Components of water potential estimated from xylem pressure measurements in five tree species. Oecologia (Berlin) 28:191–202

    Google Scholar 

  • Rouschal E (1938) Zur Ökologie der Macchien. I. Der sommerliche Wasserhaushalt der Macchienpflanzen. Jahrb wiss Bot 87:436–523

    Google Scholar 

  • Stocker O (1956) Die Abhängigkeit der Transpiration von den Umweltfaktoren. In: Handbuch der Pflanzenphysiologie III Ruhland W (ed) Springer, Berlin Göttingen Heidelberg pp 436–488

    Google Scholar 

  • Tyree MT, Cheung YNS, McGregor ME, Talbot AJB (1978) The characteristics of seasonal and ontogenetic changes in the tissue-water relations of Acer, Populus, Tsuga and Picea. Can J Bot 56:635–647

    Google Scholar 

  • Tyree MT, Richter H (1981) Alternative methods of analyzing water potential isotherms: some cautions and clarifications. I. The impact of non-ideality and of some experimental errors. J of Exp Bot 32:643–653

    Google Scholar 

  • Tyree MT, Richter H (1982) Alternate methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Can J Bot 60:911–916

    Google Scholar 

  • Zelniker JL (1968) Dürreresistenz von Baumarten unter Steppenbedingungen. Deutsche Akademie der Landwirtschaftswissenschaften zu Berlin, Tagungsberichte 100:131–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work completed while TMH was on sabbatical leave from the School of Forestry, Fisheries & Wildlife, University of Missouri-Columbia. Support from the Graduate School of the University of Missouri and Fonds zur Förderung der Wissenschaftlichen Forschung, Vienna (Projects 1465 and 3765)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinckley, T.M., Duhme, F., Hinckley, A.R. et al. Drought relations of shrub species: assessment of the mechanisms of drought resistance. Oecologia 59, 344–350 (1983). https://doi.org/10.1007/BF00378860

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00378860

Keywords

Navigation