Skip to main content
Log in

Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

Mutations in seven different maternal-effect loci on the second chromosome of Drosophila melanogaster all cause alterations in the anterior-posterior pattern of the embryo. Mutations in torso (tor) and trunk (trk) delete the anterior- and posterior-most structures of the embryo. At the same time they shift cellular fates which are normally found in the subterminal regions of the embryo towards the poles. Mutations in vasa (vas), valois (vls), staufen (stau) and tudor (tud) cause two embryonic defects. For one they result in absence of polar plasm, polar granules and pole cells in all eggs produced by mutant females. Secondly, embryos developing inside such eggs show deletions of abdominal segments. In addition, embryos derived from staufen mothers lack anterior head structures, embryos derived from valois mothers frequently fail to cellularize properly. Mutations in exuperantia (exu) cause deletions of anterior head structures, similar to torso, trunk and staufen. However in exu, these head structures are replaced by an inverted posterior end which comprises posterior midgut, proctodeal region, and often malpighian tubules.

The effects of all mutations can be traced back to the beginning stages of gastrulation, indicating that the alterations in cellular fates have probably taken place by that time. Analysis of embryos derived from double mutant mothers suggests that these three phenotypic groups of mutants interfere with three different, independent pathways. All three pathways seem to act additively on the system which specifies anterior-posterior cellular fates within the egg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson KV, Nüsslein-Volhard C (1984) Information for the dorsal-ventral axis is stored as maternal RNA. Nature 311:223–227

    Google Scholar 

  • Anderson KV, Jürgens G, Nüsslein-Volhard C (1985) The establishment of dorsal-ventral polarity in the Drosophila embyo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Google Scholar 

  • Ashburner M, Angel P, Detwiler C, Faithful J, Gubb D, Harrington G, Littlewood J, Tsubota S, Velissariou V, Walker V (1981) New Mutants. Dros Inf Serv 56:186

    Google Scholar 

  • Ashburner M, Tsubota S, Woodruff RC (1982) The genetics of a small chromosome region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. IV: Scutoid, and antimorphic mutation. Genetics 102:401–420

    Google Scholar 

  • Boswell RE, Mahowald AP (1985) Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43:97–104

    Google Scholar 

  • Bull A (1966) Bicaudal, a genetic factor which affects the polarity of the embryo of Drosophila melanogaster. J Exp Zool 161:221–242

    Google Scholar 

  • Counce SJ, Ede DA (1957) The effect in embryogenesis of a sex-linked female sterility factor in Drosophila melanogaster. J Embryol Exp Morphol 5:404–421

    Google Scholar 

  • Eichenberger-Glinz S (1979) Intercellular junctions during development and in tissue cultures of Drosophila melanogaster: An electronmicroscopic study. Wilhelm Roux's Arch 186:333–349

    Google Scholar 

  • Fielding CJ (1967) Developmental genetics of the mutant grandchildless of D. subobscura. J Embryol Exp Morphol 17:375–384

    Google Scholar 

  • French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981

    Google Scholar 

  • Gans M, Audit C, Masson M (1975) Isolation and characterization of sex-linked female sterile mutants in Drosophila melanogaster. Genetics 81:683–704

    Google Scholar 

  • Garcia-Bellido A (1975) Genetic control of wing disc development in Drosophila. In: Cell patterning. Ciba Foundation Symposium 29:161–183

    Google Scholar 

  • Gergen JP, Wieschaus EF (1985) The localized requirements for a gene affecting segmentation in Drosophila. Analysis of larvae mosaic for runt. Dev Biol 109:321–335

    Google Scholar 

  • Gubb D, Garcia-Bellido A (1982) A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol 68:37–57

    Google Scholar 

  • Hafen E, Kuroiwa A, Gehring WJ (1984) Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila development. Cell 37:833–841

    Google Scholar 

  • Hartenstein V, Technau GM, Campos-Ortega JA (1985) Fate mapping in wild type Drosophila melanogaster. III A fate map of the blastoderm. Wilhelm Roux's Arch 194:213–216

    Google Scholar 

  • Kalthoff K, Sander K (1968) Der Entwicklungsgang der Missbildung “Doppelabdomen” im partiell UV-bestrahlten Ei von Smittia pathenogenetica (Dipt., Chironomidae). Wilhelm Roux's Arch 161:129–146

    Google Scholar 

  • Kalthoff K (1979) Analysis of a morphogenetic determinant in an insect embryo (Smittia spec., Chironomidae, Diptera). In: Subtelny S, Koenigsberg JR (eds) Determinants of spatial organization. Academic Press, New York, pp 97–126

    Google Scholar 

  • Lawrence PA, Morata G (1977) The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev Biol 56:40–51

    Google Scholar 

  • Lewis EB (1963) Genes and developmental pathways. Am Zool 3:33–56

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Google Scholar 

  • Lohs-Schardin M, Sander K (1976) A dicephalic monster embryo of Drosophila melanogaster. Wilhelm Roux's Arch 179:159–162

    Google Scholar 

  • Lohs-Schardin M (1982) Dicephalic — a Drosophila mutant affecting polarity in follicle organization and embryonic patterning. Wilhelm Roux's Arch 191:28–36

    Google Scholar 

  • Lohs-Schardin M, Cremer C, Nüsslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster. Localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255

    Google Scholar 

  • Mackay WJ, O'Donnell JM (1983) A genetic analysis of the pteridine biosynthetic enzyme, guanosine triphosphate cyclohydrolase, in Drosophila melanogaster. Genetics 105:35–53

    Google Scholar 

  • Mahowald AP (1962) Fine structure of pole cells and polar granules in Drosophila melanogaster. J Exp Zool 151:211–215

    Google Scholar 

  • Mariol MC (1981) Genetic and developmental studies of a new grandchildless mutant of Drosophila melanogaster. Mol Gen Genet 181:505–511

    Google Scholar 

  • Meinhardt H (1977) A model of pattern formation in insect embryogenesis. J Cell Sci 23:117–139

    Google Scholar 

  • Mohler J, Wieschaus E (1986) Dominant maternal effect mutations of Drosophila melanogaster causing the production of double abdomen embryos. Genetics (in press)

  • Niki Y (1984) Developmental analysis of the grandchildless (gs(1) N26) mutation in Drosophila melanogaster: Abnormal cleavage pattern and defects in pole cell formation. Dev Biol 103:182–189

    Google Scholar 

  • Niki Y, Okada M (1981) Isolation and characterization of grandchildless-like mutants in Drosophila melanogaster. Wilhelm Roux's Arch 190:1–10

    Google Scholar 

  • Nüsslein-Volhard C (1977) Genetic analysis of pattern-formation in the embryo of Drosophila melanogaster: Characterization of the maternal-effect mutant bicaudal. Wilhelm Roux's Arch 183:249–268

    Google Scholar 

  • Nüsslein-Volhard C (1979) Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. In: Subtelny S, Koenigsberg IR (eds) Determinants of spatial organization. Academic Press, New York, pp 185–211

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Google Scholar 

  • Nüsslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C (1980) A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila melanogaster. Nature 283:474–476

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux's Arch 193:267–282

    Google Scholar 

  • Poulson DF (1950) Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster, Meigen. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 168–274

    Google Scholar 

  • Sander K (1959) Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall. (Cicadina) durch Isolieren und Kombinieren von Keimteilen. I. Die Differenzierungsleistungen vorderer und hinterer Eiteile. Wilhelm Roux's Arch (Entw Mech Org) 151:430–497

    Google Scholar 

  • Sander K (1960) Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall. (Cicadina) durch Isolieren und Kombinieren von Keimteilen. II. Die Differenzierungsleistungen nach Verlagern von Hinterpolmaterial. Wilhelm Roux's Arch (Entw Mech Org) 151:660–707

    Google Scholar 

  • Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238

    Google Scholar 

  • Schubiger G, Moseley RC, Wood WJ (1977) Interaction of different egg parts in determination of different body regions in Drosophila melanogaster. Proc Natl Acad Sci [USA] 74:2050–2053

    Google Scholar 

  • Schüpbach T, Wieschaus E (1986) Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol (in press)

  • Simcox AA, Sang JH (1983) When does determination occur in the Drosophila embryo. Dev Biol 97:212–221

    Google Scholar 

  • Struhl G (1981) A blastoderm fate map of compartments and segments of the Drosophila head. Dev Biol 84:386–396

    Google Scholar 

  • Thierry-Mieg D (1976) Study of a temperature sensitive mutant grandchildless-like in Drosophila melanogaster. J Microsc Biol Cell 25:1–6

    Google Scholar 

  • Thierry-Mieg D (1982) Paralog, a control mutant in Drosophila melanogaster. Genetics 100:209–237

    Google Scholar 

  • Turner FR, Mahowald AP (1979) Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Dev Biol 68:96–109

    Google Scholar 

  • Underwood EM, Turner FR, Mahowald AP (1980) Analysis of cell movements of fate mapping during early embryogenesis in Drosophila melanogaster. Dev Biol 74:286–301

    Google Scholar 

  • Van der Meer J (1977) Optical clean and permanent wholemount preparation for phase contrast microscopy of cuticular structures of insect larvae. Drosophila Inform Serv 52:160

    Google Scholar 

  • Van der Meer J (1984) Parameters influencing reversal of segment sequence in posterior egg fragments of Callosobruchus (Coleoptera). Wilhelm Roux's Arch 193:339–356

    Google Scholar 

  • Wieschaus E, Gehring W (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev Biol 50:249–263

    Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev Biol 104:172–186

    Google Scholar 

  • Wright TRF (1970) The genetics of embryogenesis in Drosophila. Adv Gent 15:262–395

    Google Scholar 

  • Wright TRF, Bewley GC, Sherald AF (1976) The genetics of dopa decarboxylase in Drosophila melanogaster. II. Isolation and characterization of dopa decarboxylase-deficient mutants and their relationship to the alpha-methyl-dopa-hypersensitive-mutants. Genetics 84:287–310

    Google Scholar 

  • Zalokar M, Erk I (1977) Phase-partition fixation and staining of Drosophila eggs. Stain Technol 52:89–95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüpbach, T., Wieschaus, E. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Arch Dev Biol 195, 302–317 (1986). https://doi.org/10.1007/BF00376063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376063

Key words

Navigation