Skip to main content
Log in

Hydration and phase relations of grossular-spessartine garnets at P H 2O=2 Kb

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The phase relations in the system grossular-spessartine-H2O were investigated at 2.0 Kb aqueous fluid pressure and at subsolidus temperatures down to 420 ° C. Despite metastable persistence of a compositional gap found in some intermediate members, a complete solid solution between grossular and spessartine exists.

Linear relations between the unit cell edge, a 0, and composition were readily observed down to 620 ° C with a 0=11.849(2) Å and 11.613(2) Å for grossular and spessartine, respectively. Hydrated garnets began to appear at higher temperature for the Ca-rich members. Grossular and spessartine formed at 420 ° C have a 0=11.901(2) Å and 11.632(2) Å, indicating the presence of 0.6 and 0.2 mol H2O, respectively. Intermediate members show varying degrees of hydration. Infrared spectra of the more hydrated members show a major and minor absorption bands at 3,620 cm−1 and 3,660 cm−1, respectively, in addition to a broad band around 3,430 cm−1. All the hydrogarnets formed at 420 ° C were proven to be metastable.

The rare occurrence of the intermediate grossular-spessartine garnets may be attributed to the lack of appropriate bulk chemistry of the rock rather than to the P-T conditions to which the rock is subjected. There may be a stability field for hydrogrossular below 420 ° C at 2 Kb, but not for hydrospessartine. Any occurrence of hydrogarnet may be used as a temperature indicator setting the maximum of formation for the hydrogarnet-bearing assemblage below 420 ° C at 2 Kb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boeke, H.F.: Die Granatgruppe. Z. Kristallogr. 53, 149–157 (1914)

    Google Scholar 

  • Brandenberger, E.: Kristallstrukturelle Untersuchungen an Ca-Aluminahydraten. Schweiz. Mineral. Petrogr. Mitt. 13, 5–69 (1933)

    Google Scholar 

  • Carlson, E.T.: Hydrogranet formation in the system lime-aluminasilica-water. J. Res. Nat. Bur. Stand. 56, 327–335 (1956)

    Google Scholar 

  • Coleman, R.G.: Genesis of Jadeite from San Benito County, California. Geol. Soc. Am. Bull. 70, 1583 (1959)

    Google Scholar 

  • Coombs, D.S., Kawachi, Y., Houghton, B.F., Hyden, G., Pringle, I.J., William, J.G.: Andradite and andradite-grossular solid solutions in very low-grade regionally metamorphosed rocks in southern New Zealand. Contrib. Mineral. Petrol. 63, 229–246 (1977)

    Google Scholar 

  • DeWaad, S.A.: On the origin of hydrogrossularite and other calcium silicates in serpentinites. Trans. Geol. Soc. S. Afr. 72, 23–27 (1961)

    Google Scholar 

  • Duffifield, W.A., Beeson, M.H.: Two-garnet rodingite from Amador County, California. U.S. Geol. Surv. J. Res. 1, 665–672 (1973)

    Google Scholar 

  • Ford, R.J.: A hydrogarnet from Tasmania. Mineral. Mag. 37, 942–943 (1970)

    Google Scholar 

  • Foreman, D.W., Jr.: Neutron and X-ray diffraction study of Ca3-Al2(O2D4)3, a garnetoid. J. Chem. Phys. 48, 3037–3041 (1968)

    Google Scholar 

  • Frankel, J.J.: Uvarovite garnet and South African jade from Transvaal. Am. Mineral. 44, 565–591 (1959)

    Google Scholar 

  • Gentile, A.L., Roy, R.: Isomorphism and crystalline solubility in the garnet family. Am. Mineral. 45, 701–711 (1960)

    Google Scholar 

  • Gustafson, W.I.: The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. J. Petrol. 15, 455–496 (1974)

    Google Scholar 

  • Holloway, J.R., Burnham, C.W., Millholen, G.L.: Generation of H2O-CO2 mixtures for use in hydrothermal experimentation. J. Geophys. Res. 73, 6598–6600 (1968)

    Google Scholar 

  • Hsu, L.C.: Selected phase relationships in the system Al-Mn-Fe-Si-O-H, a model for garnet equilibrai. J. Petrol. 9, 40–83 (1968)

    Google Scholar 

  • Hsu, L.C.: The stability relations of the wolframite series. Am. Mineral. 61, 944–955 (1976)

    Google Scholar 

  • Hsu, L.C.: The phase relationships in the system Ca3Al2Si3O12-Mn3 Al2Si3O12-H2O at 2.0 Kbars. EOS (Trans. Am. Geophys. Union) 59, 402 (1978)

    Google Scholar 

  • Huckenholz, H.G., Hölzl, E., Lindhuber, W.: Grossularite, its solidus and liquidus relations in the CaO-Al2O3-SiO2-H2O system up to 10 Kbar. Neues Jahrb. Mineral. Abh. 124, 1–46 (1975)

    Google Scholar 

  • Hutton, C.O.: Hydrogrossular: a new mineral of the garnet-hydrogarnet series. Trans. Roy. Soc. N. Z. 73, 174–180 (1943)

    Google Scholar 

  • Ito, J., Frondel, C.: Synthesis of the grossularite-spessartite series. Am. Mineral. 53, 1036–1038 (1968)

    Google Scholar 

  • Jaffe, H.W.: The role of yttrium and other minor elements in the garnet group. Am. Mineral. 36, 138–155 (1951)

    Google Scholar 

  • Liou, J.G.: Stability relations of andradite-quartz in the system Ca-Fe-Si-O-H. Am. Mineral. 59, 1016–1025 (1974)

    Google Scholar 

  • Mason, B.: Larnite, scawtite, and hydrogrossular from Tokatoka, New Zealand. Am. Mineral. 42, 379–392 (1957)

    Google Scholar 

  • Matthes, S.: Ergebnisse zur Granatsynthese und ihre Beziehungen zur natürlichen Granatbildung innerhalb der Pyralspit Gruppe. Geochim. Cosmochim. Acta 23, 233–294 (1961)

    Google Scholar 

  • McConnell, D.: Griphite, a hydrophosphate garnetoid. Am. Mineral. 27, 452–461 (1942)

    Google Scholar 

  • Miyashiro, A.: Chlorites of crystalline schists. J. Geol. Soc. Japan 63, 1–8 (1957)

    Google Scholar 

  • Moore, R.K., White, W.B., Long, T.V.: Vibrational spectra of the common silicates: I. The garnets. Am. Mineral. 5b, 54–71 (1971)

    Google Scholar 

  • Nemec, D.: The miscibility of the pyralspite and grandite molecules. Mineral. Mag. 36, 389–402 (1967)

    Google Scholar 

  • Omori, K.: Analysis of the infrared absorption spectrum of almandine-pyrope garnet from Nijosan, Osaka Prefecture, Japan. Am. Mineral, 56, 841–849 (1971)

    Google Scholar 

  • Onuki, H., Suzuki, T., Yoshida, T.: Unusual pyralspite-rgranite garnets from the Sanbagawa metamorphic rocks in central Shikoku. J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 72, 383–393 (1977)

    Google Scholar 

  • Pabst, A.: Reexamination of hibschite. Am. Mineral. 27, 783–792 (1942)

    Google Scholar 

  • Peters, Tj.: A water-bearing andradite from the Totalp serpentinite (Davos, Switzerland). Am. Mineral. 50, 1482–1486 (1965)

    Google Scholar 

  • Pistorius, C.W.F.T., Kennedy, G.C.: Stability relations of grossularite and hydrogrossularite at high temperatures and pressures. Am. J. Sci. 268, 247–257 (1960)

    Google Scholar 

  • Povarennykh, A.S.: Some fundamental problems of crystal chemistry in relation to mineralogy. In: Aspects of Theoretical Mineralogy in U.S.S.R. (M.H. Battey, S.I. Tomkeiff, eds.), pp. 135–167. New York: MacMillan Co. 1964

    Google Scholar 

  • Rankama, K., Sahama, Th.G.: Geochemistry. Chicago: Univ. of Chicago Press 1950

    Google Scholar 

  • Roy, D.M., Roy, R.: System CaO-Al2O3-SiO2-H2O VI: The grossularite-3CaO. Al2O3-6H2O Join. Geol. Soc. Am. Bull. 68, 1788–1789 (1957)

    Google Scholar 

  • Schiffman, P., Liou, J.G. (in press) Synthesis and stability relations of Mg-Al pumpellyite, Ca4Al5MgSi6O21(OH)7. J. Petrol.

  • Seki, Y.: Chemical characters of the grossularite-andradite mineral series in rodingites. Japan. J. Geol. Geogr. 36, 1–16 (1965)

    Google Scholar 

  • Shoji, T.: Ca3Al2(SiO4)3-Ca3Al2(O4H4)3 series garnets: composition and stability. Japan. Mineral. Mag. 11, 359–372 (1974)

    Google Scholar 

  • Shoji, T.: Phase relations in the system CaO-Fe2O3-SiO2-H2O. Japan. Mineral. Mag. 12, 143–156 (1975)

    Google Scholar 

  • Tarte, P.: Étude experimentale et interpretation du spectre infrarouge des silicates et des germanates. Mem. Acad. Roy. Belg. Cl des Sci. 35, 4a et 4b (1965)

    Google Scholar 

  • Tarte, P., Deliens, M.: Correlations between the infrared spectrum and the composition of garnets in the pyrope-almandine-spessartine series. Contrib. Mineral. Petrol. 40, 25–37 (1973)

    Google Scholar 

  • Tilley, C.E.: On the replacement of anorthite by hydrogrossular in the Transvaal. Trans. Geol. Soc. S. Afr. 60, 15–32 (1957)

    Google Scholar 

  • Tuttle, O.F.: Two pressure vessels for silicate-water studies. Geol. Soc. Am. Bull. 60, 1727–1729 (1949)

    Google Scholar 

  • Whittaker, E.J.W., Muntus, R.: Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 34, 945–956 (1970)

    Google Scholar 

  • Yoder, H.S.: Stability relations of grossularite. J. Geol. 58, 221–253 (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, L.C. Hydration and phase relations of grossular-spessartine garnets at P H 2O=2 Kb. Contr. Mineral. and Petrol. 71, 407–415 (1980). https://doi.org/10.1007/BF00374712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374712

Keywords

Navigation