Skip to main content
Log in

Thermal stability of Al-Fe epidote as a function of \(f_{{\text{o}}_{\text{2}} } \) and Fe content

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Laboratory experiments have been conducted with natural minerals to determine the relation of \(f_{{\text{o}}_{\text{2}} } \) to epidote stability, and to determine stability curves for clinozoisite and epidote. Under oxidizing conditions Fe-epidote decomposes to grandite, anorthite, hematite, and quartz. Under more reducing conditions corundum becomes a stable product instead of quartz, and magnetite, and finally hercynite replace hematite. As conditions change from oxidizing to reducing the temperature of epidote breakdown decreases, epidote becomes more aluminous and the grandite produced increases in grossularite component and, to a lesser extent, in almandine.

At 3000 bars under oxidizing conditions epidote is stable up to 694° C, epidote-corundum is stable to 692° C, clinozoisite is stable to 658° C, and clinozoisite-quartz is stable to 628° C. Approximate curves for the fractional decomposition of Al-Fe epidote have been determined as a function of Fe content under oxidizing conditions. Extrapolation of clinozoisite results to an Fe-free composition, and comparison with zoisite stability results suggest that at elevated pressures clinozoisite inverts with increasing temperature to zoisite along a nearly vertical phase boundary at 635±75° C.

The stability relations provide an upper limit for epidote mineral stability mainly applicable to calcareous rocks. The epidote composition present in any given rock must be a function largely of bulk composition and \(f_{{\text{o}}_{\text{2}} } \). Zoisite replaces Al-clinozoisite in rocks of medium grade and high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boettcher, A. L.: The system CaO-Al2O3-SiO2-H2O at high pressures and temperatures J. Petrol. 11, 337–379 (1970).

    Google Scholar 

  • Brown, E. H.: The greenschist facies in part of eastern Otago, New Zealand. Contr. Mineral. and Petrol. 14, 259–292 (1967).

    Google Scholar 

  • Burnham, C. W.: Lattice constant refinement. Carnegie Inst. Wash. Year Book 61, 132–135 (1962).

    Google Scholar 

  • Burnham, C. W., Holloway, J. R., Davis, N. F.: Thermodynamic properties of water to 1000° C and 10,000 bars. Geol. Soc. Am. Spec. Paper 132, 96 p. (1969).

  • Burns, R. G., Strens, R. G. J.: Structural interpretation of polarized absorption spectra of the Al-Fe-Mn-Cr epidotes. Mineral. Mag. 36, 204–226 (1967).

    Google Scholar 

  • Clark, S. P., ed.: Handbook of physical constants. Geol. Soc. Am. Mem. 97, 587 p. (1966).

  • Coe, R. S. and Paterson, M. S.: Coherent polymorphic transitions under nonhydrostatic stress: the α-β inversion in quartz. Am. Geophys. Union Trans. 49, 761 (1968).

    Google Scholar 

  • Coleman, R. G., Lee, D. E., Beatty, L. B., Brannock, W. W.: Eclogites and eclogites: their differences and similarities. Geol. Soc. Am. Bull. 76, 483–508 (1965).

    Google Scholar 

  • Darken, L. S., Gurry, R. W.: Physical chemistry of metals, 535 p. New York: McGraw-Hill 1953.

    Google Scholar 

  • Deer, W. A., Howie, R. A., Zussman, J.: Rock-forming minerals, vol. 1, Orthoand ring silicates, 333 p. New York: John Wiley 1962.

    Google Scholar 

  • Dollase, W. A.: Refinement of the crystal structures of epidote, allanite, and hancockite. Am. Mineralogist 56, 447–464 (1971).

    Google Scholar 

  • Ehlers, E. G.: An investigation of the stability relations of the Al-Fe members of the epidote group. J. Geol. 61, 231–251 (1953).

    Google Scholar 

  • Ernst, W. G., Seki, Y., Onuki, H., Gilbert, M. C.: Comparative study of low-grade metamorphism in the California coast ranges and the outer metamorphic belt of Japan. jtGeol. Soc. Am. Spec. Papers 124, 276 p. (1970).

  • Eugster, H. P., Wones, D. R.: Stability relations of the ferruginous biotite, annite. J. Petrol. 3, 82–125 (1962).

    Google Scholar 

  • Fyfe, W. S.: Stability of epidote minerals. Nature 87, 497 (1960a).

    Google Scholar 

  • Fyfe, W. S.: Hydrothermal synthesis and determination of equilibrium between minerals in the subsolidus region. J. Geol. 68, 553–566 (1960b).

    Google Scholar 

  • Fyfe, W. S., Turner, F. J., Verhoogen, J.: Metamorphic reactions and metamorphic facies. Geol. Soc. Am. Mem. 73, 259 p. (1958).

  • Garrels, R. M., Christ, C. L.: Solutions, minerals, and equilibria, 450 p. New York: Harper & Row 1965.

    Google Scholar 

  • Green, D. H., Lockwood, J. P., Kiss, E.: Eclogite and almandine-jadeite-quartz rock from the Guajira peninsula, Columbia, South America. Am. Mineralogist 53, 1320–1335 (1968).

    Google Scholar 

  • Grover, J. E., Orville, P. M.: The partitioning of cations between coexisting single and multisite phases with application to the assemblages: orthopyroxene-clinopyroxene and orthopyroxene-olivine. Geochim. Cosmochim. Acta 33, 205–226 (1969).

    Google Scholar 

  • Harker, A.: Metamorphism, 362 p. London: Methuen 1932.

    Google Scholar 

  • Harpum, J. R.: Formation of epidote in Tanganyika. Geol. Soc. Am. Bull. 65, 1075–1092 (1954).

    Google Scholar 

  • Hays, J. F., Lime-alumina-silica. Carnegie Inst. Wash. Year Book 65, 234–239 (1967).

    Google Scholar 

  • Holdaway, M.J.: Basic regional metamorphic rocks in part of the Klamath Mountains, northern California. Am. Mineralogist 50, 953–977 (1965).

    Google Scholar 

  • Holdaway, M. J.: Hydrothermal stability of clinozoisite plus quartz. Am. J. Sci. 264, 643–667 (1966).

    Google Scholar 

  • Holdaway, M. J.: Stability of andalusite and the aluminum silicate phase diagram. Am. J. Sci. 271, 97–131 (1971).

    Google Scholar 

  • Hoschek, G.: The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contr. Mineral. and Petrol. 22, 208–232 (1969).

    Google Scholar 

  • Hsu, L. C.: Selected phase relationships in the system Al-Mn-Fe-Si-O-H: a model for garnet equilibria. J. Petrol. 9, 40–83 (1968).

    Google Scholar 

  • Huckenholz, H. G., Yoder, H. S.: Andradite stability relations in the CaSiO3-Fe2O3 join up to 30 kb. Neues Jahrb. Mineral. Abhandl. 114, 246–280 (1971).

    Google Scholar 

  • Huebner, J. S.: Buffering techniques for hydrostatic systems at elevated pressures. In Ulmer, G. C., ed.: Research techniques for high pressure and high temperature, 367 p. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Keith, T. E. C., Muffler, L. J. P., Cremer, M.: Hydrothermal epidote formed in the Salton Sea geothermal system, California. Am. Mineralogist 53, 1635–1644 (1968).

    Google Scholar 

  • Kennedy, W. Q.: Zones of progressive regional metamorphism in the Moine schists of the western Highlands of Scotland. Geol. Mag. 86, 43–56 (1949).

    Google Scholar 

  • Kerrick, D. M.: Contact metamorphism in some areas of the Sierra Nevada, California. Geol. Soc. Am. Bull. 81, 2913–2938 (1970).

    Google Scholar 

  • Kretz, R.: Note on some equilibria in which plagioclase and epidote participate. Am. J. Sci. 261, 973–982 (1963).

    Google Scholar 

  • Liou, J. G.: Synthesis and stability relations of epidote, Ca2Fe+3Al2Si3O13H. Am. Geophys. Union Trans. 53, 538–539 (1972).

    Google Scholar 

  • Merrin, S.: Experimental investigation of epidote paragenesis. Diss. Penn. State Univ. 1962.

  • Myer, G. H.: X-ray determinative curve for epidote. Am. J. Sci. 263, 78–86 (1965).

    Google Scholar 

  • Myer, G. H.: New data on zoisite and epidote. Am. J. Sci. 264, 364–385 (1966).

    Google Scholar 

  • Misch, P.: Stable association wollastonite-anorthite and other calc-silicate assemblages in amphibolite facies crystalline schists of Nanga Parbat, northwest Himalayas. Contr. Mineral. and Petrol. 10, 315–356 (1964).

    Google Scholar 

  • Miyashiro, A., Seki, Y.: Enlargement of the composition field of epidote and piemontite with rising temperature. Am. J. Sci. 256, 423–430 (1958).

    Google Scholar 

  • Morgan, B. A.: Petrology and mineralogy of eclogite and garnet amphibolite from Puerto Cabello, Venezuela. J. Petrol. 11, 101–145 (1970).

    Google Scholar 

  • Newton, R. C.: The thermal stability of zoisite. J. Geol. 73, 431–441 (1965).

    Google Scholar 

  • Newton, R. C.: Some calc-silicate equilibrium relations. Am. J. Sci. 264, 204–222 (1966).

    Google Scholar 

  • Nitsch, K. H., Winkler, H. G. F.: Bildungsbedingungen von Epidot und Orthozoisit. Contr. Mineral. and Petrol. 11, 470–486 (1965).

    Google Scholar 

  • Phillips, B., Muan, A.: Phase equilibria in the system CaO-iron oxide-SiO2 in air. J. Am. Ceram. Soc. 42, 413–423 (1959).

    Google Scholar 

  • Pistorius, C. W. F. T.: Synthesis and lattice constants of pure zoisite and clinozoisite. J. Geol. 69, 604–609 (1961).

    Google Scholar 

  • Pistorius, C. W. F. T., Kennedy, G. C.: Stability relations of grossularite and hydrogrossularite at high temperatures and pressures. Am. J. Sci. 258, 247–257 (1960).

    Google Scholar 

  • Pistorius, C. W. F. T., Kennedy, G. C., Sourirajan, S.: Some relations between the phases anorthite, zoisite, and lawsonite at high temperatures and pressures. Am. J. Sci. 260, 44–56 (1962).

    Google Scholar 

  • Rankin, G. A., Wright, F. E.: The ternary system CaO-Al2O3-SiO2. Am. J. Sci. 189, 1–79 (1915).

    Google Scholar 

  • Richardson, S. W.: Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol. 9, 467–488 (1968).

    Google Scholar 

  • Robie, R. A., Waldbaum, D. R.: Thermodynamic properties of minerals and related substances at 298.15° K (25.0° C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U. S. Geol. Surv. Bull. 1259, 256 p. (1968).

    Google Scholar 

  • Seki, Y.: Relation between chemical composition and lattice constants of epidote. Am. Mineralogist 44, 720–730 (1959).

    Google Scholar 

  • Skinner, B. J.: Physical properties of end-members of the garnet group. Am. Mineralogist 41, 428–436 (1956).

    Google Scholar 

  • Strens, R. G. J.: Some relations between members of the epidote group. Nature 198, 80–81 (1963).

    Google Scholar 

  • Strens, R. G. J.: Epidotes of the Borrowdale volcanic rocks of central Borrowdale. Mineral. Mag. 33, 868–886 (1964).

    Google Scholar 

  • Strens, R. G. J.: Stability relations of the Al-Fe epidotes. Mineral. Mag. 35, 464–475 (1965).

    Google Scholar 

  • Temple, A. K.: Zoisite-rutile rock from Los Angeles County, California. Am. Mineralogist 51, 1028–1034 (1966).

    Google Scholar 

  • Turner, F. J.: Metamorphic petrology, 403 p. New York: McGraw-Hill 1968.

    Google Scholar 

  • Turnock, A. C., Eugster, H. P.: Fe-Al oxides: phase relationships below 1000° C. J. Petrol. 3, 533–565 (1962).

    Google Scholar 

  • Watson, K. De P.: Zoisite-prehnite alteration of gabbro. Am. Mineralogist 27, 638–645 (1942).

    Google Scholar 

  • Winkler, H. G. F., Nitsch, K. H.: Zoisitbildung bei der experimentellen Metamorphose. Naturwissenschaften 49, 605 (1962).

    Google Scholar 

  • Winkler, H. G. F., Nitsch, K. H.: Bildung von Epidote. Naturwissenschaften 50, 612–613 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holdaway, M.J. Thermal stability of Al-Fe epidote as a function of \(f_{{\text{o}}_{\text{2}} } \) and Fe content. Contr. Mineral. and Petrol. 37, 307–340 (1972). https://doi.org/10.1007/BF00371011

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371011

Keywords

Navigation