Skip to main content
Log in

The physics and mechanics of fibre-reinforced brittle matrix composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review compiles knowledge about the mechanical and structural performance of brittle matrix composites. The overall philosophy recognizes the need for models that allow efficient interpolation between experimental results, as the constituents and the fibre architecture are varied. This approach is necessary because empirical methods are prohibitively expensive. Moreover, the field is not yet mature, though evolving rapidly. Consequently, an attempt is made to provide a framework into which models could be inserted, and then validated by means of an efficient experimental matrix. The most comprehensive available models and the status of experimental assessments are reviewed. The phenomena given emphasis include: the stress/strain behaviour in tension and shear, the ultimate tensile strength and notch sensitivity, fatigue, stress corrosion and creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a i :

Parameters found in the paper by Hutchinson and Jensen [33], Table IV

a o :

Length of unbridged matrix crack

a m :

Fracture mirror radius

a N :

Notch size

a t :

Transition flaw size

b :

Plate dimension

b i :

Parameters found in the paper by Hutchinson and Jensen [33], Table IV

c i :

Parameters found in the paper by Hutchinson and Jensen [33], Table IV

d :

Matrix crack spacing

d s :

Saturation crack spacing

f :

Fibre volume fraction

f l :

Fibre volume fraction in the loading direction

g :

Function related to cracking of 90 ° plies

h :

Fibre pull-out length

l :

Sliding length

l i :

Debond length

l s :

Shear band length

m :

Shape parameter for fibre strength distribution

m m :

Shape parameter for matrix flaw-size distribution

n :

Creep exponent

n m :

Creep exponent for matrix

n f :

Creep exponent for fibre

q :

Residual stress in matrix in axial orientation

s ij :

Deviatoric stress

t :

Time

t p :

Ply thickness

t b :

Beam thickness

u :

Crack opening displacement (COD)

u a :

COD due to applied stress

u b :

COD due to bridging

v :

Sliding displacement

w :

Beam width

B :

Creep rheology parameter ɛo no

C v :

Specific heat at constant strain

E :

Young's modulus for composite

E o :

Plane strain Young's modulus for composites

Ē :

Unloading modulus

E * :

Young's modulus of material with matrix cracks

E f :

Young's modulus of fibre

E m :

Young's modulus of matrix

E L :

Ply modulus in longitudinal orientation

E T :

Ply modulus in transverse orientation

E t :

Tangent modulus

E s :

Secant modulus

G :

Shear modulus

G :

Energy release rate (ERR)

G tip :

Tip ERR

G otip :

Tip ERR at lower bound

K :

Stress intensity factor (SIF)

K b :

SIF caused by bridging

K m :

Critical SIF for matrix

K R :

Crack growth resistance

K tip :

SIF at crack tip

I o :

Moment of inertia

L :

Crack spacing in 90 ° plies

L f :

Fragment length

L g :

Gauge length

L o :

Reference length for fibres

N :

Number of fatigue cycles

N s :

Number of cycles at which sliding stress reaches steady-state

R :

Fibre radius

R :

R-ratio for fatigue (σmaxmin)

R c :

Radius of curvature

S :

Tensile strength of fibre

S b :

Dry bundle strength of fibres

S c :

Characteristic fibre strength

S g :

UTS subject to global load sharing

S o :

Scale factor for fibre strength

S p :

Pull-out strength

S th :

Threshold stress for fatigue

S u :

Ultimate tensile strength (UTS)

S * :

UTS in the presence of a flaw

T :

Temperature

ΔT :

Change in temperature

Δt :

Traction function for thermomechanical fatigue (TMF)

Δt b :

Bridging function for TMF

α:

Linear thermal coefficient of expansion (TCE)

αf :

TCE of fibre

αm :

TCE of matrix

γ:

Shear strain

γc :

Shear ductility

δc :

Characteristic length

δɛ:

Hysteresis loop width

ɛ:

Strain

ɛ* :

Strain caused by relief of residual stress upon matrix cracking

ɛe :

Elastic strain

ɛo :

Permanent strain

ɛo :

Reference strain rate for creep

ɛτ :

Transient creep strain

ɛs :

Sliding strain

λ:

Pull-out parameter

μ:

Friction coefficient

ξ:

Fatigue exponent (of order 0.1)

κ:

Beam curvature

ν:

Poisson's ratio

φ:

Orientation of interlaminar cracks

ρ:

Density

σ:

Stress

σb :

Bridging stress

¯σb :

Peak, reference stress

σe :

Effective stress = [(3/2)s ijsij]1/2

σf :

Stress in fibre

σi :

Debond stress

σm :

Stress in matrix

σmc :

Matrix cracking stress

σo :

Stress on 0 ° plies

σo :

Creep reference stress

σrr :

Radial stress

σR :

Residual stress

σs :

Saturation stress

σ *s :

Peak stress for traction law

στ :

Lower bound stress for tunnel cracking

σT :

Misfit stress

τ:

Interface sliding stress

τf :

Value of sliding stress after fatigue

τo :

Constant component of interface sliding stress

τs :

In-plane shear strength

¯τc :

Critical stress for interlaminar crack growth

τss :

Steady-state value of τ after fatigue

δR :

Displacement caused by matrix removal

Δɛp :

Unloading strain differential

δɛo :

Reloading strain differential

Γ:

Fracture energy

Γi :

Interface debond energy

Γf :

Fibre fracture energy

Γm :

Matrix fracture energy

ΓR :

Fracture resistance

Γs :

Steady-state fracture resistance

ΓT :

Transverse fracture energy

Ω:

Misfit strain

Ωo :

Misfit strain at ambient temperature

References

  1. K. M. Prewo, J. Mater. Sci. 17 (1982) 3549.

    CAS  Google Scholar 

  2. S. Mall, D. E. Bullock and J. J. Pernot, to be published.

  3. C. Cady, T. J. Mackin and A. G. Evans, J. Am. Ceram. Soc. (1993) in press.

  4. A. G. Evans, J. M. Domergue and E. Vagaggini, ibid. in press.

  5. V. C. Nardonne and K. M. Prewo, J. Mater. Sci. 23, (1988) 168.

    Google Scholar 

  6. R. Y. Kim and N. Pagano, J. Am. Ceram. Soc. 74 (1991) 1082.

    CAS  Google Scholar 

  7. H. C. Cao, E. Bischoff, O. Sbaizero, M. Rühle and A. G. Evans, ibid. 73 (1990) 1691.

    CAS  Google Scholar 

  8. A. W. Pryce and P. Smith, J. Mater. Sci. 27 (1992) 2695.

    CAS  Google Scholar 

  9. K. M. Prewo, ibid. 22 (1987) 2595.

    Google Scholar 

  10. L. P. Zawada, L. M. Butkus and G. A. Hartman, J. Am. Ceram. Soc. 74 (1991) 2851.

    CAS  Google Scholar 

  11. C. Weber and A. G. Evans, ibid. (1993) in press.

    Google Scholar 

  12. G. Bao and Z. Suo, Appl. Mech. Rev. 45 (1992) 355.

    Google Scholar 

  13. J. Aveston, G. A. Cooper and A. Kelly, in “The Properties of Fiber Composites”, NPL Conference Proceedings (IPC Publishing, Guildford, 1971) pp. 15–26.

    Google Scholar 

  14. W. A. Curtin, J. Am. Ceram. Soc. 74 (1991) 2837.

    CAS  Google Scholar 

  15. A. G. Evans and D. B. Marshall, Acta Metall. 37 (1989) 2567.

    CAS  Google Scholar 

  16. A. G. Evans and F. W. Zok, in “Topics In Fracture and Fatigue”, edited by A. S. Argon (Springer-Verlag, NY, 1992) pp. 271–308.

    Google Scholar 

  17. E. Vagaggini, J. M. Domergue and A. G. Evans, J. Am. Ceram. Soc. (1993) in press.

  18. I. B. Davis, J. P. A. Löfvander, A. G. Evans, E. Bischoff and M. L. Emiliani, ibid. 76 (1993) 1249.

    CAS  Google Scholar 

  19. A. G. Evans, F. W. Zok and J. Davis, Compos. Sci. Technol. 42 (1991) 3.

    CAS  Google Scholar 

  20. M. Y. He, B. X. Wu, A. G. Evans and J. W. Hutchinson, Mech. Mater. (1993) in press.

  21. A. G. Evans, Mater. Sci. Eng. A143 (1991) 63.

    CAS  Google Scholar 

  22. B. N. Cox, Acta Metall. Mater. 39 (1991) 1189.

    Google Scholar 

  23. B. N. Cox and C. S. Lo, ibid. 40 (1992) 69.

    CAS  Google Scholar 

  24. B. N. Cox and D. B. Marshall, Fatigue Fract. Eng. Mater. 14 (1991) 847.

    Google Scholar 

  25. P. A. Brøndsted, F. E. Heredia and A. G. Evans, J. Am. Ceram. Soc. (1993) in press.

  26. F. E. Heredia, S. M. Spearing, P. Mosher, A. G. Evans and W. A. Curtin, ibid. 75 (1992) 3017.

    CAS  Google Scholar 

  27. F. E. Heredia, S. M. Spearing, M. Y. He, T. J. Mackin, P. A. Brøndsted, A. G. Evans and P. Mosher, J. Am. Ceram. Soc. (1993) in press.

  28. W. A. Curtin, J. Mater. Sci. 26 (1991) 91.

    Google Scholar 

  29. J. F. Jamet, D. Lewis and E. Y. Luh, Ceram. Eng. Sci. Proc. 5 (1984) 625.

    CAS  Google Scholar 

  30. F. W. Zok and S. M. Spearing, Acta Metall. Mater. 40 (1992) 2033.

    Google Scholar 

  31. D. B. Marshall, B. N. Cox and A. G. Evans, Acta Metall. 33 (1985) 2013.

    Google Scholar 

  32. D. B. Marshall and B. N. Cox, Mech. Mater. 7 (1986) 127.

    Google Scholar 

  33. J. W. Hutchinson and H. Jensen, ibid. 9 (1990) 139.

    Google Scholar 

  34. R. J. Kerans and T. A. Parthasarathy, J. Am. Ceram. Soc. 74 (1991) 1585.

    CAS  Google Scholar 

  35. P. D. Jero, R. J. Kerans and T. A. Parthasarathy, ibid. 74 (1991) 2793.

    CAS  Google Scholar 

  36. T. Mackin, P. Warren and A. G. Evans, Acta Metall. Mater. 40 (1992) 1251.

    CAS  Google Scholar 

  37. M. Y. He and J. W. Hutchinson, Int. J. Solids Struct. 25 (1989), 1–53.

    Google Scholar 

  38. N. A. Fleck, Proc. R. Soc. A432 (1991) 55.

    Google Scholar 

  39. C. Xia and J. W. Hutchinson, Acta Metall. Mater., in press.

  40. D. B. Marshall and W. C. Oliver, J. Am. Ceram. Soc. 70 (1987) 542.

    CAS  Google Scholar 

  41. R. W. Rice, US Pat. 4642,271, 10 February 1987; assigned to the USA as represented by the Secretary of the Navy.

  42. R. W. Rice, J. R. Spann, D. Lewis and W. Coblenz, Ceram. Eng. Sci. Proc. 5 (1984) 614.

    CAS  Google Scholar 

  43. B. Bender, O. Shadwell, C. Bulik, L. Incorvati and D. Lewis III, Am. Ceram. Soc. Bull. 65 (1986) 363.

    CAS  Google Scholar 

  44. J. J. Brennan, in “Tailoring of Multiphase Ceramics”, edited by R. E. Tressler, et al. Vol. 20 (Plenum, NY, 1986) p. 549.

    Google Scholar 

  45. D. B. Marshall and A. G. Evans, J. Am. Ceram. Soc. 68 (1985) 225.

    CAS  Google Scholar 

  46. C. Liang and J. W. Hutchinson, Mech. Mater. 14 (1993) 207.

    Google Scholar 

  47. T. J. Kotil, J. W. Holmes and M. Comninou, J. Am. Ceram. Soc. 73 (1990) 1879.

    CAS  Google Scholar 

  48. J. Lamon, P. Raballiat and A. G. Evans, ibid. in press.

    Google Scholar 

  49. T. Mackin, J. Yang, C. Levi and A. G. Evans, Acta Metall. Mater. (1993) in press.

  50. J. J. Brennan and K. M. Prewo, J. Mater. Sci. 17 (1982) 2371.

    CAS  Google Scholar 

  51. R. Naslain, Compos. Interfaces 1 (1993) 253.

    CAS  Google Scholar 

  52. X. Buratt, unpublished research at LCTs, Bordeaux (1993).

  53. J. W. Holmes and S. F. Shuler, J. Mater. Sci. Lett. 9 (1990) 1290.

    CAS  Google Scholar 

  54. J. W. Holmes and C. Cho, J. Am. Ceram. Soc. 75 (1992) 929.

    CAS  Google Scholar 

  55. R. Y. Kim and A. P. Katz, Ceram. Eng. Sci. Proc. 9 (1988) 853.

    CAS  Google Scholar 

  56. E. Bischoff, M. Rühle, O. Sbaizero and A. G. Evans, J. Am. Ceram. Soc. 72 (1989) 741.

    CAS  Google Scholar 

  57. B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.

    Google Scholar 

  58. K. K. Chawla, “Composite Materials Science and Engineering” (Springer, New York, 1987).

    Google Scholar 

  59. F. W. Zok and A. G. Evans (1993) to be published.

  60. D. Beyerle, S. M. Spearing and A. G. Evans, J. Am. Ceram. Soc. 75 (1992) 3321.

    CAS  Google Scholar 

  61. D. Beyerle, S. M. Spearing, F. Zok and A. G. Evans, ibid. 75 (1992) 2719.

    CAS  Google Scholar 

  62. Q. Ma and D. R. Clarke, ibid. 76 (1993) 1435.

    Google Scholar 

  63. Q. Ma, H. C. Cao, D. R. Clarke and A. G. Evans (1993) to be published.

  64. X. Yang and R. J. Young, J. Mater. Sci. 28 (1993) 2536.

    CAS  Google Scholar 

  65. L. Phoenix and R. Raj, Acta Metall. Mater. 40 (1992) 2813.

    CAS  Google Scholar 

  66. F. Hild, J. M. Domergue, F. A. Leckie and A. G. Evans, Int. J. Solids Struct, to be published.

  67. R. B. Henstenburg and S. L. Phoenix, Polym. Compos. 10 (1989) 389.

    CAS  Google Scholar 

  68. A. Freudenthal, in “Fracture”, edited by H. Liebowitz (Academic Press, NY, 1967) pp. 341–45.

    Google Scholar 

  69. J. R. Matthews, W. J. Shack and F. A. McClintock, J. Am. Ceram. Soc. 59 (1976) 304.

    CAS  Google Scholar 

  70. H. E. Daniels, Proc. R. Soc. A183 (1945) 405.

    Google Scholar 

  71. H. L. Oh and I. Finnie, Int. J. Fract. 6 (1970) 287.

    Google Scholar 

  72. M. D. Thouless and A. G. Evans, Acta Metall. 36 (1988) 517.

    CAS  Google Scholar 

  73. M. D. Thouless, O. Sbaizero, L. S. Sigl and A. G. Evans, J. Am. Ceram. Soc. 72 (1989) 525.

    CAS  Google Scholar 

  74. M. Sutcu, Acta Metall. 37 (1989) 651.

    CAS  Google Scholar 

  75. H. T. Corten, in “Modern Composite Materials”, edited by L. J. Broutman and R. H. Krock (Addison, Boston, 1967) p. 27.

    Google Scholar 

  76. D. C. Phillips, J. Mater. Sci. 9 (1974) 1874.

    Google Scholar 

  77. L. Cui and B. Budiansky, J. Mech. Phys. Solids, in press.

  78. Z. Suo, S. Ho and X. Gong, J. Mater. Eng. Technol. 15 (1993) 319.

    Google Scholar 

  79. K. M. Prewo, J. Mater. Sci. 21 (1986) 3590.

    CAS  Google Scholar 

  80. A. J. Eckel and R. C. Bradt, J. Am. Ceram. Soc. 72 (1989) 435.

    Google Scholar 

  81. S. Baste, R. El Guerjouma and B. Andoin, Mech. Mater. 14 (1992) 15.

    Google Scholar 

  82. L. N. McCartney, Proc. R. Soc. A409 (1987) 329.

    Google Scholar 

  83. R. M. McMeeking and A. G. Evans, Mech. Mater. 9 (1990) 217.

    Google Scholar 

  84. H. Tada, P. C. Paris and G. R. Irwin, “The Stress Analysis of Cracks Handbook” (Del Research Corp., St. Louis, Mo, 1985).

    Google Scholar 

  85. C. Cho, J. W. Holmes and J. R. Barber, J. Am. Ceram. Soc. 75 (1992) 316.

    CAS  Google Scholar 

  86. S. M. Spearing and F. W. Zok, J. Eng. Mater. Technol. 115 (1993) 314.

    CAS  Google Scholar 

  87. R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 126.

    Google Scholar 

  88. B. Harris, R. A. Habib and R. G. Cooke, Proc. R. Soc. Ser. A. 437 (1992) 109.

    CAS  Google Scholar 

  89. K. Prewo and J. J. Brennan, J. Mater. Sci, 17 (1982) 1201.

    CAS  Google Scholar 

  90. Idem, ibid. 17 (1980) 463.

    Google Scholar 

  91. Idem, ibid. 17 (1982) 1201.

    CAS  Google Scholar 

  92. T. W. Coyle, M. H. Guyot and J. F. Jamet, Ceram. Eng. Sci. Proc. 7 (1986) 947.

    CAS  Google Scholar 

  93. O. Sbaizero and A. G. Evans, J. Am. Ceram. Soc. 69 (1986) 481.

    CAS  Google Scholar 

  94. J. W. Hutchinson and Z. Suo, Appl. Mech. Rev. 28 (1991) 63.

    Google Scholar 

  95. C. Xia, R. R. Carr and J. W. Hutchinson, Acta Metall. Mater. 41 (1993) 2365.

    CAS  Google Scholar 

  96. N. Laws and G. Dvorak, J. Compos. Mater. 22 (1980) 900.

    Google Scholar 

  97. X. Aubard Thèse de Doctorat de L'Université de Paris, November 1992.

  98. J. M. Domergue, E. Vagaggini and A. G. Evans (1993) J. Amer. Ceram. Soc., in press.

  99. H. Chai, Composites 15 (1984) 277.

    Google Scholar 

  100. S. M. Spearing and A. G. Evans, Acta Metall. 40 (1992) 2191.

    CAS  Google Scholar 

  101. D. A. W. Kaute, H. R. Shercliff and M. F. Ashby, Acta Metall. Mater. (1993) to be published.

  102. G. Bao, B. Fan and A. G. Evans, Mech. Mater. 13 (1992) 59.

    Google Scholar 

  103. R. Bordia, B. J. Dalgleish, P. G. Charalambides and A. G. Evans, J. Am. Ceram. Soc. 74 (1991) 2776.

    CAS  Google Scholar 

  104. F. W. Zok, O. Sbaizero, C. Hom and A. G. Evans, J Am. Ceram. Soc. 74 (1991) 187.

    CAS  Google Scholar 

  105. F. W. Zok and C. L. Hom, Acta Metall. Mater. 38 (1990) 1895.

    CAS  Google Scholar 

  106. J. Bowling and G. W. Groves, J. Mater. Sci. 14 (1979) 43.

    Google Scholar 

  107. H. R. Bakis, H. R. Yih, W. W. Stinchomb and K. L. Reifsnider, ASTM STP 1012 (American Society for Testing and Materials, Philadelphia, PA, 1989) pp. 66–83.

    Google Scholar 

  108. W. W. Stinchcomb and C. E. Bakis, in “Fatigue of Composite Materials”, edited by K. L. Reifsnider (Elsevier Science, NY, 1990) pp. 105–80.

    Google Scholar 

  109. M. C. Shaw, D. B. Marshall, M. Dhadkah and A. G. Evans, Acta Metall. Mater. 41 (1993) 3311.

    CAS  Google Scholar 

  110. N. Harwood and W. M. Cummings, “Thermoelastic Stress Analysis” (Adam Hilger IOP, NY, 1991).

    Google Scholar 

  111. T. J. Mackin, A. G. Evans, M. Y. He and T. E. Purcell (1993) J. Amer. Ceram Soc., in press.

  112. S. E. Molis and D. R. Clarke, J. Am. Ceram. Soc. 73 (1990) 3189.

    Google Scholar 

  113. C. Q. Rousseau, ASTM STP 1080, edited by J. M. Kennedy, H. H. Moeller and W. S. Johnson (American Society for Testing and Materials, Philadelphia, PA, 1990) pp. 240–52.

    Google Scholar 

  114. D. Rouby and P. Reynaud, in “Ceramic Matrix Composites”, AGARD Conference Proceedings 795, Antalya, Turkey (Specialist Printers, Loughton, 1993).

    Google Scholar 

  115. S. M. Weiderhorn, J. Am. Ceram. Soc. 50 (1967) 45.

    Google Scholar 

  116. M. Sensmeier and K. Wright, in “Proceedings TMS Fall Meeting”, edited by P. K. Law and M. N. Gungor (ASM, Pittsburgh, 1989) p. 441.

    Google Scholar 

  117. D. Walls, G. Bao and F. Zok, Scripta Metall. Mater. 25 (1991) 911.

    CAS  Google Scholar 

  118. Idem, Acta Metall. Mater. 41 (1993) 2061.

    CAS  Google Scholar 

  119. D. Walls and F. W. Zok, in “Advanced Metal Matrix Composites for Elevated Temperatures”, edited by M. N. Gungor, E. J. Lavernia and S. G. Fishman (ASM, Metals Park, OH, 1991) p. 101.

    Google Scholar 

  120. G. Bao and R. McMeeking, Acta Metall. Mater. (1993) in press.

  121. T. Mackin and F. W. Zok, J. Am. Ceram. Soc. 75 (1993) 3169.

    Google Scholar 

  122. S. M. Spearing, F. W. Zok and A. G. Evans, ibid. 77 (1994) 562.

    CAS  Google Scholar 

  123. J. W. Holmes, ibid. 74 (1991) 39.

    Google Scholar 

  124. R. M. McMeeking, Int. J. Solids Struct. (1993) in press.

  125. M. McLean, Compos. Sci. Technol. 23 (1985) 37.

    Google Scholar 

  126. S. T. Mileiko, J. Mater. Sci. 5 (1970) 254.

    CAS  Google Scholar 

  127. A. Kelly and K. N. Street, Proc. R. Soc. Lond. A328 (1972) 283.

    Google Scholar 

  128. T. G. Nieh, Metall. Trans. 15A (1984) 139.

    CAS  Google Scholar 

  129. S. Gunawadena, S. Jansson and F. E. Leckie, Acta Metall. Mater. (1993) in press.

  130. S. Jannson and F. A. Leckie, J. Mech. Phy. Solids 40 (1992) 593.

    Google Scholar 

  131. J. W. Holmes, J Mater. Sci. 26 (1991) 1808.

    CAS  Google Scholar 

  132. C. Weber, J. Y. Yang, J. P. A. Löfvander, C. G. Levi and A. G. Evans, Mat. Sci. Eng. A161 (1993) 285.

    Google Scholar 

  133. F. Abbe, J. Vicens and J. L. Chermant, J. Mater. Sci. Lett. 8 (1989) 1026.

    CAS  Google Scholar 

  134. C. Weber, S. J. Connell and F. W. Zok, ICCM-9 (Woodhead Pub. Madrid, 1993) to be published 417-23.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.G., Zok, F.W. The physics and mechanics of fibre-reinforced brittle matrix composites. JOURNAL OF MATERIALS SCIENCE 29, 3857–3896 (1994). https://doi.org/10.1007/BF00355946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355946

Keywords

Navigation