Skip to main content
Log in

Unusual organization of a ribosomal protein operon in the plastid genome of Cryptomonas Φ: evolutionary considerations

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

the region of the plastid genome containing the genes for ribosomal proteins S12 and S7 and the elongation factor Tu (corresonding to three of the four str operon genes of Escherichia coli) was investigated in the unicellular marine alga Cryptomonas. Sequence analysis shows the gene organization to be rps12–16 bp spacer-rps7–68 bp spacer-tufA. No introns are present in any of the genes. Comparisons of the deduced amino acid sequence of these genes with homologues from other organisms show rps12 to be very highly conserved, except at the amino terminus, and rps7 and tufA to be less well-conserved. Transcript analysis suggests that these genes are co-transcribed along with several up and/or downstream genes. The evolutionary significance of this unique gene organization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmen J-M von, Stutz E (1987) Nucleic Acids Res 15:2387

    Google Scholar 

  • Baldauf SL, Palmer JD (1990) Nature 344:262–265

    Google Scholar 

  • Bohnert HJ, Michalowski C, Bevacqua S, Mucke H, Loffelhardt W (1985) Mol Gen Genet 201:565–574

    Google Scholar 

  • Bryant DA, Stirewalt VL (1990) FEBS Lett 259:273–280

    Google Scholar 

  • Buttarelli FR, Calogero RA, Gualerzi CO, Pon CL (1989) Mol Gen Genet 217:97–104

    Google Scholar 

  • Christopher DA, Hallick RB (1989) Nucleic Acids Res 17 (19):7591–7608

    Google Scholar 

  • Christopher DA, Cushman JC, Price CA, Hallick RB (1988) Curr Genet 14:275–286

    Google Scholar 

  • Douglas SE (1988) Curr Genet 14:591–598

    Google Scholar 

  • Douglas SE, Durnford DG (1989) Plant Mol Biol 13:13–20

    Google Scholar 

  • Douglas SE, Durnford DG (1990a) Nucleic Acids Res 18(7):1903

    Google Scholar 

  • Douglas SE, Durnford DG (1990b) DNA Sequence-J DNA Seg Map 1:55–62

    Google Scholar 

  • Draper DE (1989) Trends Biochem Sci 14:335–338

    Google Scholar 

  • Evrard J-L, Johnson C, Janssen I, Loffelhardt W, Weil J-H, Kuntz M (1990a) Nucleic Acids Res 18:1115–1119

    Google Scholar 

  • Evrard J-L, Kuntz M, Weil, J-H (1990b) J Md Evol 30:16–25

    Google Scholar 

  • Filer D, Dhar R, Furano AV (1981) Eur J Biochem 120:69–77

    Google Scholar 

  • Fukuzawa H, Kohchi T, Shai H, Ohyama K, Umesono K, Inokuchi H, Ozeki H (1986) FEBS Lett 198:11–15

    Google Scholar 

  • Funatsu G, Wittmann HG (1972) J Mol Biol 68:547–550

    Google Scholar 

  • Funatsu G, Yaguchi M, Wittmann-Liebold B (1977) FEBS Lett 73:12–17

    Google Scholar 

  • Galili S, Fromm H, Aviv D, Edelman M, Galun E (1989) Mol Gen Genet 218:289–292

    Google Scholar 

  • Giese K, Subramanian AR, Larrinua IM, Bogorad L (1987) J Biol Chem 262:15251–15255

    Google Scholar 

  • Gillott MA, Gibbs SP (1980) J Phycol 16:558–568

    Google Scholar 

  • Gualberto JM, Wintz H, Weil J-H, Grienenberger J-M (1988) Mol Gen Genet 215:118–127

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194

    Google Scholar 

  • Jurnak F (1985) Science 230:32–36

    Google Scholar 

  • Kimura M, Kimura J (1987) FEBS Lett 210:91–96

    Google Scholar 

  • LaCour TFM, Nyborg J, Thirup S, Clark BFC (1985) EMBO J 4:2385–2388

    Google Scholar 

  • Lemieux B, Turmel M, Lemieux C (1985) Biosystems 18:293–298

    Google Scholar 

  • Liu X-Q, Gillham NW, Boynton JE (1989) J Biol Chem 264:16 100–16 108

    Google Scholar 

  • Lucas-Lenard J, Lipmann F (1971) Annu Rev Biochem 40:409–448

    Google Scholar 

  • Manhart JR, Kelly K, Dudock BS, Palmer JD (1989) Mol Gen Genet 216:417–421

    Google Scholar 

  • Marck C (1988) Nucleic Acids Res 16:1829–1835

    Google Scholar 

  • Moller K, Zwieb C, Brimacombe R (1978) J Mol Biol 126:489–506

    Google Scholar 

  • Montandon PE, Stutz E (1984) Nucleic Acids Res 12:2851–2859

    Google Scholar 

  • Nomura M, Yates JL, Dean D, Post LE (1980) Proc Natl Acad Sci USA 77:7084–7088

    Google Scholar 

  • Nomura M, Gourse R, Baughman G (1984) Annu Rev Biochem 53:75–117

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Palmer JD, Stein DB (1986) Curr Genet 10:823–833

    Google Scholar 

  • Perasso R, Baroin A, Liang HQ, Bachellerie JP, Adoutte A (1989) Nature 339:142–144

    Google Scholar 

  • Posno M, Verweij WR, Dekker IC, de Waard PM, Groot GSP (1986) Curr Genet 11:25–34

    Google Scholar 

  • Post LE, Nomura M (1980) J Biol Chem 255:4660–4666

    Google Scholar 

  • Pritchard AE, Venuti SE, Ghalambor MA, Sable CL, Cummings DJ (1989) Gene 78:121–134

    Google Scholar 

  • Reinbolt J, Tritsch D, Wittmann-Liebold B (1978) FEBS Lett 91:297–301

    Google Scholar 

  • Schmidt RJ, Hosler JP, Gillham NW, Boynton JE (1985) In: Steinbeck K, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 417–427

    Google Scholar 

  • Sekar V (1987) Biotechniques 5:11–13

    Google Scholar 

  • Shimada H, Sugiura M (1989) Curr Genet 16:293–301

    Google Scholar 

  • Shinozaki K, OhmeM, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M (1986) Proc Natl Acad Sci USA 83:6030–6034

    Google Scholar 

  • Thomas F, Massenet O, Dorne AM, Mache R (1988) Nucleic Acids Res. 16:2461–2472

    Google Scholar 

  • Timmis JN, Scott NS (1983) Nature 305:65–67

    Google Scholar 

  • Torazawa K, Hayashida N, Obokata J, Shinozaki K, Sugiura M (1986) Nucleic Acids Res 14:3143

    Google Scholar 

  • Watson JC, Surzycki SJ (1983) Curr Genet 7:201–210

    Google Scholar 

  • Yokota T, Sugisaki H, Takanami M, Kaziro Y (1980) 12:25–31

  • Zaita N, Torazawa K, Shinozaki K, Sugiura M (1987) FEBS Lett 210:153–156

    Google Scholar 

  • Zhou K-X, Quigley F, Massenet O, Mache R (1989) Mol Gen Genet 216:439–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Lee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, S.E. Unusual organization of a ribosomal protein operon in the plastid genome of Cryptomonas Φ: evolutionary considerations. Curr Genet 19, 289–294 (1991). https://doi.org/10.1007/BF00355057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355057

Key words

Navigation