Skip to main content
Log in

The μ-and δ-opioid pharmacophore conformations of cyclic β-casomorphin analogues indicate docking of the Phe3 residue to different domains of the opioid receptors

  • Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Cyclic β-casomorphin analogues with a d-configured amino acid residue in position 2, such as Tyr-c[-Xaa-Phe-Pro-Gly-] and Tyr-c[-Xaa-Phe-d-Pro-Gly-] (Xaa=d-A2bu, d-Orn, d-Lys) were found to bind to the μ-opioid receptor as well as to the δ-opioid receptor, whereas the corresponding l-Xaa2 derivatives are nearly inactive at both. Low-energy conformers of both active and nearly inactive derivatives have been determined in a systematic conformational search or by molecular dynamics simulations using the TRIPOS force field. The obatained conformations were compared with regard to a model for μ-selective opiates developed by Brandt et al. [Drug Des. Discov., 10 (1993) 257]. Superpositions as well as electrostatic, lipophilic and hydrogen bonding similarities with the δ-opioid receptor pharmacophore conformation of t-Hpp-JOM-13 proposed by Mosberg et al. [J. Med. Chem., 37 (1994) 4371, 4384] were used to establish the probable δ-pharmacophoric cyclic β-casomorphin conformations. These conformations were also compared with a δ-opioid agonist (SNC 80) and the highly potent antagonist naltrindole. These investigations led to a prediction of the μ-and δ-pharmacophore structures for the cyclic β-casomorphins. Interestingly, for the inactive compounds such conformations could not be detected. The comparison between the μ-and δ-pharmacophore conformations of the cyclic β-casomorphins demonstrates not only differences in spatial orientation of both aromatic groups, but also in the backbone conformations of the ring part. In particular, the differences in Φ2 and Ψ2 (μ≈70°,-80°; δ≈165°,55°) cause a completely different spatial arrangement of the cyclized peptide rings when all compounds are matched with regard to maximal spatial overlap of the tyrosine residue. Assuming that both the μ-and δ-pharmacophore conformations bind with the tyrosine residue in a similar orientation at the same transmembrane domain X of their receptors, the side chain of Phe3 as a second binding site has to dock with different domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F., Hoppe-Seyler's Z. Physiol. Chem., 360 (1979) 1211.

    Google Scholar 

  2. Henschen, A., Lottspeich, F., Brantl, V. and Teschemacher, H., Hoppe-Seyler's Z. Physiol. Chem., 360 (1979) 1217.

    Google Scholar 

  3. Koch, G. and Brantl, V., In Nyberg, F. and Brantl, V. (Eds.) β-Casomorphins and Related Peptides, Fyris-Tryck AB, Uppsala, Sweden, 1990, pp. 43–52.

    Google Scholar 

  4. Brantl, V., Pfeiffer, A., Herz, A., Henschen, A. and Lottspeich, F., Peptides, 3 (1982) 793.

    Google Scholar 

  5. Liebmann, C., Szücs, M., Neubert, K., Hartrodt, B., Arold, H. and Barth, A., Peptides, 7 (1986) 195.

    Google Scholar 

  6. Chang, K.J., Wie, E.T., Killian, A. and Chang, J.K., J. Pharmacol. Exp. Ther., 227 (1983) 403.

    Google Scholar 

  7. Schmidt, R., Neubert, K., Barth, A., Liebmann, C., Schnittler, M., Chung, N.N. and Schiller, P.W., Peptides, 12 (1991) 1175.

    Google Scholar 

  8. Rüthrich, H.-L., Grecksch, G., Schmidt, R. and Neubert, K., Peptides, 13 (1992) 483.

    Google Scholar 

  9. Schmidt, R., Vogel, D., Mrestani-Klaus, C., Brandt, W., Neubert, K., Chung, N.N., Lemieux, C. and Schiller, P.W., J. Med. Chem., 37 (1994) 1136.

    Google Scholar 

  10. Brandt, W., Mrestani-Klaus, C., Schmidt, R., Schinke, H., Neubert, K., Schiller, P.W., Höltje, H.-D. and Barth, A., Quant. Struct.-Act. Relatsh., 14 (1995) 417.

    Google Scholar 

  11. Kleinpeter, E., Ströhl, D., Peinze, S., Brandt, W., Schmidt, R. and Neubert, K., Struct. Chem., 7 (1996) 139–151, in press.

    Google Scholar 

  12. Mrestani-Klaus, C., Brandt, W., Schmidt, R., Schiller, P.W. and Neubert, K., Pharm. Med. Chem, 329 (1996) 133.

    Google Scholar 

  13. Keys, C., Payne, P., Amsterdam, P., Toll, L. and Loew, G., Mol. Pharmacol., 33 (1988) 528.

    Google Scholar 

  14. Froimowitz, M. and Hruby, V.J., Int. J. Pept. Protein Res., 34 (1989) 88.

    Google Scholar 

  15. Nikiforovich, G.V. and Hruby, V.J., Biochem. Biophys. Res. Commun., 173 (1990) 521.

    Google Scholar 

  16. Nikiforovich, G.V., Golbraikh, A., Shenderovich, M.D. and Balodis, J., Int. J. Pept. Protein Res., 36 (1990) 209.

    Google Scholar 

  17. Chew, C., Villar, H.O. and Loew, G.H., Biopolymers, 33 (1993) 647.

    Google Scholar 

  18. Mosberg, H.I., Lomize, A.L., Wang, C., Kroona, H., Heyl, D.L., Sobczyk-Kojiro, K., Ma, W., Mousigian, C. and Porreca, F., J. Med. Chem., 37 (1994) 4371.

    Google Scholar 

  19. Mosberg, H.I., Omnaas, J.R., Lomize, A.L., Wang, C., Heyl, D.L., Nordan, I., Mousigian, C., Davis, P. and Porreca, F., J. Med. Chem., 37 (1994) 4384.

    Google Scholar 

  20. Calderon, S.N., Rothman, R.B., Porreca, F., Flippen-Anderson, J.L., McNutt, R.W., Xu, H., Smith, L.E., Bilsky, E.J., Davis, P. and Rice, K.C., J. Med. Chem., 37 (1994) 2125.

    Google Scholar 

  21. Portoghese, P.S., Sultana, M., Moe, S.T. and Takemori, A.E., J. Med. Chem., 37 (1994) 579.

    Google Scholar 

  22. Brandt, W., Barth, A. and Höltje, H.-D., Drug Des. Discov., 10 (1993) 257.

    Google Scholar 

  23. Penkler, L.J., VanRooyen, P.H. and Wessels, P.L., Int. J. Pept. Protein Res., 41 (1993) 261.

    Google Scholar 

  24. Maigret, B., Fournie-Zaluski, M.C., Roques, B. and Premilat, S., Mol. Pharmacol., 29 (1986) 314.

    Google Scholar 

  25. Clark, M., Cramer III, R.D. and VanOpdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Google Scholar 

  26. SYBYL, Tripos Associates Inc., St. Louis, MO.

  27. Gasteiger, J. and Marseli, M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  28. Gasteiger, J. and Saller, H., Angew. Chem., 97 (1985) 699.

    Google Scholar 

  29. Brandt, J., Wahab, M., Thondorf, I., Schinke, H. and Barth, A., J. Mol. Graph., 9 (1991) 122.

    Google Scholar 

  30. Cometta-Morini, C. and Loew, G.H., J. Comput.-Aided Mol. Design, 5 (1991) 335.

    Google Scholar 

  31. Liebmann, C., Schnittler, M., Hartrodt, B., Born, I. and Neubert, K., Pharmazie, 46 (1991) 345.

    Google Scholar 

  32. Neubert, K., Hartrodt, B., Born, I., Barth, A., Ruethrich, H.-L., Grecksch, G., Schrader, U. and Liebmannin, C., In Nyberg, F. and Brantl, V. (Eds.) β-Casomorphins and Related Peptides, Fyris-Tryck AB, Uppsala, Sweden, 1990, pp. 15–20.

    Google Scholar 

  33. Schmidt, R., Kalman, A., Chung, N.N., Lemieux, C., Horvath, C. and Schiller, P.W., Int. J. Pept. Protein Res., 46 (1995) 47.

    Google Scholar 

  34. Schiller, P.W., Nguyen, T.M.-D. and Lemieux, C., Adv. Biosci., 75 (1989) 85.

    Google Scholar 

  35. Schwyzer, R., Biochemistry, 25 (1986) 6335.

    Google Scholar 

  36. Melchiorri, P., Negri, L., Falconieri-Espamer, G., Severini, C., Corsi, R., Soaje, M., Erspamer, V. and Barra, D., Eur. J. Pharmacol., 195 (1991) 201.

    Google Scholar 

  37. Lazarus, L.H., Salvadori, S., Santagada, V., Tomatis, R. and Wilson, W.E., J. Med. Chem., 34 (1991) 1350.

    Google Scholar 

  38. Portoghese, P.S., Moe, S.T. and Takemori, A.E., J. Med. Chem., 36 (1993) 2572.

    Google Scholar 

  39. Kong, H., Raynor, K., Yasuda, K., Moe, S.T., Portoghese, P.S., Bell, G.I. and Reisine, T., J. Biol. Chem., 268 (1993) 23055.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation given at the 14th Molecular Graphics and Modelling Society Conference, held in Cairns, Australia, August 27–September 1, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, W., Stoldt, M. & Schinke, H. The μ-and δ-opioid pharmacophore conformations of cyclic β-casomorphin analogues indicate docking of the Phe3 residue to different domains of the opioid receptors. Journal of Computer-Aided Molecular Design 10, 201–212 (1996). https://doi.org/10.1007/BF00355043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355043

Keywords

Navigation