Skip to main content
Log in

Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Two glycolytic enzymes, phosphoglucose isomerase and fructose-1,6-bisphosphate aldolase, of Saccharomyces cerevisiae could be replaced by their heterologous counterparts from Escherichia coli and Drosophila melanogaster. Both heterologous enzymes, which show respectively little and no sequence homology to the corresponding yeast enzymes, fully restored wild-type properties when their genes were expressed in yeast deletion mutants. This result does not support notions of an obligatory formation of glycolytic multi-enzyme aggregates in yeast; nor does it support possible regulatory functions of yeast phosphoglucose isomerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera A (1986) Mol Gen Genet 204:310–316

    Google Scholar 

  • Aguilera A (1987) Curr Genet 11:429–434

    Google Scholar 

  • Aguilera A Zimmermann FK (1986) Mol Gen Genet 202:83–89

    Google Scholar 

  • Gergmeyer HU (1970) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Burke RL, Tekamp-Olson P, Najarian R (1983) J Biol Chem 258:2193–2201

    Google Scholar 

  • Chaput M, Clacs V, Portetelle D, Cludts I, Cravador A, Burny A, Gras H, Tartar A (1988) Nature 332:454–455

    Google Scholar 

  • Chiang HL, Schekman R (1991) Nature 350:313–318

    Google Scholar 

  • Ciriacy M, Breitenbach I (1979) J Bacteriol 139:152–160

    Google Scholar 

  • Entian KD (1986) Microbiol Sci 3:366–371

    Google Scholar 

  • Faik P, Walker JIH, Redmill AAM, Morgan MJ (1988) Nature 332:455–456

    Google Scholar 

  • François J, Van Schaftingen E, Hers HG (1984) Eur J Biochem 145:187–193

    Google Scholar 

  • Froman BE, Tait RC, Gottlieb LD (1989) Mol Gen Genet 217:126–131

    Google Scholar 

  • Gancedo C (1971) J Bacteriol 107:401–404

    Google Scholar 

  • Gancedo JM (1992) Eur J Biochem 206:297–313

    Google Scholar 

  • Gancedo JM Gancedo C (1979) Eur J Biochem 101:455–460

    Google Scholar 

  • Gething MJ, Sambrook J (1992) Nature 355:33–45

    Google Scholar 

  • Gietz RD, Sugino A (1988) Gene 74:527–534

    Google Scholar 

  • Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) Mol Gen Genet 228:401–409

    Google Scholar 

  • Green JBA, Wright APH, Cheung WY, Lancashire WE, Hartley BS (1988) Mol Gen Genet 215:100–106

    Google Scholar 

  • Guthrie C, Fink GR (eds) (1991) Methods Enzymol 194

  • Harris CE, Kobes RD, Teller DC, Rutter WJ (1969) Biochemistry 8:2442–2454

    Google Scholar 

  • Hohmann S, Cederberg H (1990) Eur J Biochem 188:615–621

    Google Scholar 

  • Holzer H (1984) Mechanism and function of reversible phosphorylation of fructose-1,6-bisphosphatase in yeast. In: Cohen P (ed) Molecular aspects of cellular regulation vol 3. Elsevier, Amsterdam, pp 143–154

    Google Scholar 

  • Horecker BL, Tsolas O, Lai CY (1972) In: Boyer PD (ed) The enzymes, 3rd edn., vol 7. Academic Press, New York, pp 213–258

    Google Scholar 

  • Kim J, Yim JJ, Wang S, Dorsett D (1992) Mol Cell Biol 12:773–783

    Google Scholar 

  • Maitra PK, Lobo Z (1971) J Biol Chem 246:475–488

    Google Scholar 

  • Marsh JJ, Lebherz HG (1992) Trends Biochem Sci 17:110–113

    Google Scholar 

  • Moore PA, Sagliocco FA, Wood RMC, Brown AJP (1991) Mol Cell Biol 11:5330–5337

    Google Scholar 

  • Ovádi J (1988) Trends Biochem Sci 13:486–490

    Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Yeast 8:423–488

    Google Scholar 

  • Rose MA, Entian KD, Hofmann L, Vogel RF, Mecke D (1988) FEBS Lett 241:55–59

    Google Scholar 

  • Rose M, Albig W, Entian KD (1991) Eur J Biochem 199:511–518

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Saubrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schaaff I, Green JBA, Gozalbo D, Hohmann S (1989) Curr Genet 15:75–81

    Google Scholar 

  • Schiestl RH, Gietz RD (1989) Curr Genet 16:339–346

    Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) J Bacteriol 151:1146–1152

    Google Scholar 

  • Schmitt HD, Ciriacy M, Zimmermann FK (1983) Mol Gen Genet 192:247–252

    Google Scholar 

  • Schwelberger HG, Kohlwein SD, Paltauf F (1989) Eur J Biochem 180:301–308

    Google Scholar 

  • Shaw-Lee R, Lissemore JL, Sullivan DT, Tolan DR (1992) J Biol Chem 267:3959–3967

    Google Scholar 

  • Srere PA (1987) Annu Rev Biochem 56:89–124

    Google Scholar 

  • Thomas D, Cherest H, Surdin-Kerjan Y (1991) EMBO J 10:547–553

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communciated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boles, E., Zimmermann, F.K. Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster . Curr Genet 23, 187–191 (1993). https://doi.org/10.1007/BF00351494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351494

Key words

Navigation