Skip to main content
Log in

Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad

II. Electron microscopy

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Three types of glial cells can be recognized on the basis of their form, the size and shape of the nucleus, and distinctive cytoplasmic characteristics when reconstructed from serial electron micrographs of the toad spinal cord. They correspond to astrocytic neuroglial cells, oligodendrocytes, and microgliacytes described with the light microscope.

Astrocytic neuroglial cells are most common near the central canal. Abundant cytoplasm containing fibrils surrounds the large, darkly rimmed nucleus and extends into the long, radially oriented processes. The latter give rise to many fine laminate extensions which cover the surface of nerve cells, are intercalated between components of the neuropile, and are united to one another by tight junctions. Although the processes terminate at the pia in large end-feet, similar enlargements have not been seen near the surface of capillaries.

Cells resembling type I oligodendrocytes have long, thin, processes of small diameter, dense cytoplasm, and round nuclei which commonly bear one or more invaginations. Although small round processes similar to those of oligodendrocytes form the outer cytoplasmic tongue of myelin it was not possible to trace them far enough to demonstrate continuity with oligodendrocyte somata. Inner cytoplasmic tongues reconstructed from serial sections are continuous with nodes of Ranvier and have a form resembling the tubular reticulum of type IV oligodendrocytes. The fact that the tubular reticulum is located on the inner surface of myelin and lacks cytoplasmic continuity with the outer tongues suggests that type IV oligodendrocytes are not identical to Schwann cells of peripheral nerves as they have been classically described.

Cells identified as microgliacytes have dark, elongate nuclei, scant perinuclear cytoplasm containing numerous dense bodies, clear vesicles and multivesicular bodies, and characteristic irregular processes. It is usually possible to distinguish microgliacytes from oligodendrocytes without analysis of serial sections by characteristic features of the cytoplasm and by the elongate shape of the nucleus.

Capillaries in the toad spinal cord resemble venules. They are larger than most mammalian capillaries, are surrounded by collagen, and are not invested by a continuous layer of astrocytic neuroglial cell processes. Cells tentatively identified as pericytes are frequently associated with them, but they are not separated from the surrounding neuropile by a basal lamina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achúcarro, N.: De l'évolution de la néuroglie et spécialement de ses relations avec l'appareil vasculaire. Trab. Inst. Cajal Invest. biol. 13, 169–212 (1915).

    Google Scholar 

  • Bakay, L., and J. C. Lee: Ultrastructural changes in the edematous central nervous system: III. Edema in shark brain. Arch. Neurol. 14, 644–660 (1966).

    Google Scholar 

  • Blackstad, T. W.: Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z. Zellforsch. 67, 819–834 (1965).

    Google Scholar 

  • Cammermeyer, J.: The hypependymal microglia cell. Z. Anat. Entwickl.-Gesch. 124, 543–561 (1965a).

    Google Scholar 

  • —: I. Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the mouse facial nucleus. Ergebn. Anat. Entwickl.-Gesch. 38, 1–22 (1965b).

    Google Scholar 

  • —: VI. Histiocytes, juxtavascular mitotic cells and microglia cells during retrograde changes in the facial nucleus of rabbits of varying age. Ergebn. Anat. Entwickl.-Gesch. 38, 195–229 (1965c).

    Google Scholar 

  • —: Morphologic distinctions between oligodendrocytes and microglia cells in the rabbit cerebral cortex. Amer. J. Anat. 118, 227–248 (1966).

    Google Scholar 

  • Castro, F. de: Algunas observaciones sobre la histogénesis de la neurogliá en el bulbo olfativo. Trab. Inst. Cajal Invest. biol. 18, 83–108 (1920).

    Google Scholar 

  • Charlton, B. T., and E. G. Gray: Comparative electron microscopy of synapses in the vertebrate spinal cord. J. Cell Sci. 1, 67–80 (1966).

    Google Scholar 

  • Clemente, C. D.: Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol. 6, 257–301 (1964).

    Google Scholar 

  • Del Río Hortega, P.: La microgliá y su transformación en celulas en bastoncito y cuerpos gránulo-adiposos. Trab. Inst. Cajal Invest. biol. 18, 37–82 (1920).

    Google Scholar 

  • —: Tercera aportación al conocimiento morfologico e interpretación funcional de la oligodendroglía. Arch. Histol. (B. Aires) 6, 132–183, 239–306 (1956). Reprinted from Mem. Real Soc. esp. Hist. nat. 14, 5–122 (1928).

    Google Scholar 

  • Duve, C. de, and R. Wattiaux: Functions of lysosomes. Ann. Rev. Physiol. 28, 435–492 (1966).

    Google Scholar 

  • Farquhar, M. G., and G. E. Palade: Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Google Scholar 

  • Gaze, R. M., and M. Jacobson: A study of the retinotectal projections during regeneration of the optic nerve in the frog. Proc. roy. Soc. B 157, 420–448 (1963).

    Google Scholar 

  • Gordon, G. B., L. R. Miller, and K. G. Bensch: Studies on the intracellular digestive process in mammalian tissue culture cells. J. Cell Biol. 25, 41 (1965).

    Google Scholar 

  • Gray, E. G.: Ultrastructure of synapses of the cerebral cortex and of certain specialisations of neuroglial membranes, from J. D. Boyd et al. (ed.). In: Electron microscopy in anatomy, p. 54–73. London: Arnold 1961.

    Google Scholar 

  • —: Tissue of the central nervous system, from S. M. Kirtz (ed). In: Electron microscopic anatomy, p. 369–417. New York: Academic Press 1964.

    Google Scholar 

  • Ham, A. W.: Histology, 3rd ed. Philadelphia: J. B. Lippincott Co. 1957.

    Google Scholar 

  • Hydén, H.: Biochemical and functional interplay between neuron and glia, from J. Wortis (ed). Recent advances in biological psychiatry, vol. 6, p. 31–54. New York: Plenum Press 1964.

    Google Scholar 

  • Katz, B., and R. Miledi: A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.) 168, 389–422 (1963).

    Google Scholar 

  • Kruger, L., and D. S. Maxwell: Electron microscopy of oligodendrocytes in normal rat cerebrum. Amer. J. Anat. 118, 411–436 (1966).

    Google Scholar 

  • Kuffler, S. W., J. G. Nicholls, and R. K. Orkand: Physiological properties of glial cells in the central nervous system of Amphibia. J. Neurophysiol. 29, 768–787 (1966).

    Google Scholar 

  • Maxwell, D. S., and L. Kruger: The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J. Cell Biol. 25, 141–157 (1965a).

    Google Scholar 

  • —: Small blood vessels and the origin of phagocytes in the rat cerebral cortex following heavy particle irradiation. Exp. Neurol. 12, 33–54 (1965b).

    Google Scholar 

  • —: The reactive oligodendrocyte. An electron microscopic study of cerebral cortex following alpha particle irradiation. Amer. J. Anat. 118, 437–460 (1966).

    Google Scholar 

  • Millonig, G.: Further observations on a phosphate buffer for osmium solutions in fixation. Inter. Cong. elec. Micr. 5, P-8. New York: Academic Press 1962.

  • Mugnaini, E., and F. Walberg: The fine structure of the capillaries and their surroundings in the cerebral hemispheres of Myxine glutinosa L. Z. Zellforsch. 66, 333–351 (1965).

    Google Scholar 

  • Orkand, R. K., J. G. Nicholls, and S. W. Kuffler: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of Amphibia. J. Neurophysiol. 29, 788–806 (1966).

    Google Scholar 

  • Peters, A.: Plasma membrane contacts in the central nervous system. J. Anat. (Lond.) 96, 237–248 (1962).

    Google Scholar 

  • Piatt, J., and M. Piatt: Transection of the spinal cord in the adult frog. Anat. Rec. 131, 81–96 (1958).

    Google Scholar 

  • Ramón y Cajal, S.: Histologie du système nerveux de l'homme et des vertébrés, vol. 1, trans. by L. Azoulay. Paris: Maloine 1909.

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Serra, M.: Nota sobre las gliofibrillas de la neuroglía de la rana. Trab. Inst. Cajal Invest. biol. 19, 217–230 (1920).

    Google Scholar 

  • Sjöstrand, J.: Morphological changes in glial cells during nerve regeneration. Acta physiol. scand. 67, Suppl. 270, 19–43 (1966).

    Google Scholar 

  • Smart, I., and C. P. Leblond: Evidence for division and transformations of neuroglia cells in the mouse brain, as derived from radioautography after injection of thymidine-H3. J. comp. Neurol. 116, 349–367 (1961).

    Google Scholar 

  • Smith, R. E., and M. G. Farquhar: Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J. Cell Biol. 31, 319–347 (1966).

    Google Scholar 

  • Sperry, R. W.: Optic nerve regeneration with return of vision in anurans. J. Neurophysiol. 7, 57–69 (1944).

    Google Scholar 

  • Stell, W. K.: Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rec. 153, 389–398 (1965).

    Google Scholar 

  • Stensaas, L. J., and S. S. Stensaas: Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. I. Light microscopy. Z. Zellforsch. 84, 473–489 (1968).

    Google Scholar 

  • Wolff, J.: Electronenmikroskopische Untersuchungen über Struktur und Gestalt von Astrozytenfortsätzen. Z. Zellforsch. 66, 811–828 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to express our gratitude to members of the Department of Ultrastructure for their cooperation. We also wish to thank Dr. Omar Trujillo-Cenóz for his advice and for his review of the manuscript.

Supported by a Postdoctoral Fellowship from the Cerebral Palsy Research and Educational Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stensaas, L.J., Stensaas, S.S. Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. Zeitschrift für Zellforschung 86, 184–213 (1968). https://doi.org/10.1007/BF00348524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348524

Keywords

Navigation