Skip to main content
Log in

The use of biological methods to determine the microbiological activity of soils under cultivation

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Summary

In Ap horizons of typical arable soils under cereals in Northwest Germany, biological activity was estimated by measuring microbial activity. Twelve soils on local farms and six soils on a research farm were analysed. Microbial biomass, dehydrogenase activity, and alkaline phosphatase activity were compared with the biological availability of P, an index describing the relationship among several P fractions that has been used in ecological agriculture. The correlation between the microbial biomass and dehydrogenase and alkaline phosphatase activity was strong but the correlation between the biological availability of P and the enzyme activities was weak. In contrast, in the farm fields, there was a significant correlation between the microbial biomass and the biological availability of P. The correlation between the biological availability of P and pH was highly significant (r=0.65–0.93***). Explanations for these correlations are discussed and proposals for further investigations are made. (1) Is the pH effect a direct chemical one or an indirect biological one? (2) Which soil organisms affect the biological availability of P in contrast to the microbial biomass, dehydrogenase activity, and alkaline phosphatase activity? (3) Is the method suitable for the investigation of all arable soils?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson G (1980) Assessing organic phosphorus in soils. In: Stelly M (ed) The role of phosphorus in agriculture. Am Soc of Agron, Madison, Wisconsin, pp 411–332

    Google Scholar 

  • Arden-Clarke C, Hodges RD (1988) The environmental effects of conventional and organic/biological farming systems: II. Soil ecology, soil fertility and nutrient cycles. Biol Agric Hortic 5:223–285

    Google Scholar 

  • Balzer F (1984) Bodenanalyse System Dr. Balzer. Lebendige Erde 1:13–18

    Google Scholar 

  • Balzer FM, Balzer-Graf UR (1984) Bodenanalyse System Dr. Balzer: 2. Teil: Beispiele aus der Praxis. Lebendige Erde 2:66–71

    Google Scholar 

  • Blume H-P (1986) (ed) Soils and landscapes in Schleswig-Holstein. Guidebook XIII. Congress of International Soil Science Society. Mitt Dtsch Bodenk Ges 51:1–131

  • Bolton H, Elliott LF, Papendick RI, Bezdicek DF (1985) Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol Biochem 17:297–302

    Google Scholar 

  • Broadbent FE (1986) Effects of organic matter on nitrogen and phosphorus supply to plant. In: Chen Y, Avnimelech Y (eds) The role of organic matter in modern agriculture. Nijhoff, Dordrecht, pp 13–27

    Google Scholar 

  • Crossley DA, Coleman DC, Hendrix PF, Cheng W, Wright DH, Beare MH, Edwards CA (1991) (eds) Modern techniques in soil ecology. Elsevier, Amsterdam

    Google Scholar 

  • Dyer B (1894) On the analytical determination of probable mineral plant food in soils. Trans Chem Soc 65:115–167

    Google Scholar 

  • Egner H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden: II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. K Lantbrukshoegsk Ann 26:204–209

    Google Scholar 

  • Gehlen P, Schröder D (1990) Variabilität mikrobiologischer Eigenschaften von Böden aus gleichem Substrat und ähnlicher Bewirtschaftung. Kali-Briefe 19:545–556

    Google Scholar 

  • Hayman DS (1975) Phosphorus, cycling on soil microorganism and plant roots. In: Walker N (ed) Soil microbiology. Wiley and Sons, New York, pp 67–91

    Google Scholar 

  • Henis Y (1986) Soil microorganisms, soil organic matter and soil fertility. In: Chen Y, Avnimelech Y (eds) The role of organic matter in modern agriculture. Nijhoff, Dordrecht, pp 159–168

    Google Scholar 

  • Heinemeyer O, Insam H, Kayser EA, Walenzik G (1980) Soil microbial biomass and respiration measurements: An automated technique based on infra-red gas analysis. Plant and Soil 116:191–195

    Google Scholar 

  • Hoffmann G (1966) Eine photometrische Methode zur Bestimmung der Phosphatase-Aktivität in Böden. Z Pflanzenernähr Bodenkd 118:161–172

    Google Scholar 

  • Koepf HH, Petterson BD, Schaumann W (1976) Biodynamic agriculture: An introduction. Anthroposophic Press, New York

    Google Scholar 

  • Köster W (1988) Stickstoff-, Phosphor- und Kaliumbilanzen landwirtschaftlich genutzter Böden der Bundesrepublik Deutschland von 1950–1986. Landwirtschaftskammer Hannover/LUFA Hameln, Hameln, p 162

    Google Scholar 

  • McLachlan KD (1980) Acid phosphatase activity in intact roots and phosphorus nutrition in plants. I. Assay conditions and phosphatase activity. Aust J Agric Res 31:429–440

    Google Scholar 

  • Mengel K (1986) Umsatz im Boden und Ertragswirksamkeit rohphosphathaltiger Düngemittel. Z Pflanzenernähr Bodenkd 149:674–690

    Google Scholar 

  • Morgan MF (1941) Chemical soil diagnosis by universal testing system. Conn Agric Exp Stn Bull 450, New Haven

  • Nannipieri P, Johsnon RL, Paul EA (1978). Criteria for measurement of microbial growth and activity in soils. Soil Biol Biochem 19:491–500

    Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990). Ecological signicance of the biological activity in soil. In: Bollag J-M, Stotzky G (eds) Soil biochemistry. Vol 6, Dekker, New York, pp 293–355

    Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E (1991) Bodenbiologische Arbeitsmethoden. Springer, Berlin

    Google Scholar 

  • Szegi J (1988) Cellulose-decompostion and soil fertility. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Tan KH (1986) Degradation of soil minerals by organic acids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison, Wisconsin, pp 1–25

    Google Scholar 

  • Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–259

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. Macmillan Publishing, New York

    Google Scholar 

  • Weiss K (1990) Vergleich der im alternativen Landbau gebräuchlichen Bodenuntersuchungsmethoden. In: Kücke M (ed) Nährstoffdynamik und Nährstoffbilanzen in alternativ wirtschaftenden Betrieben. Landbauforsch Völlkenrode Sonderh 113:117–125

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, L., Wachendorf, C., Balzer, F.M. et al. The use of biological methods to determine the microbiological activity of soils under cultivation. Biol Fertil Soils 13, 242–247 (1992). https://doi.org/10.1007/BF00340583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340583

Key words

Navigation