Skip to main content
Log in

Extraocular proprioceptive signals affect ocular motor activity neither directly nor parametrically in the presence of optokinetic or vestibular stimulation in the frog

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Direct and parametric effects of stretch receptors in the extraocular muscles on abducens nerve activity were investigated in the unanesthetized immobilized frog. Horizontal passive rotations of one eye in the physiological range (±5°) did not elicit responses in the activity of abducens nerve on either side; however, larger rotations or pull of one eye evoked long latency direction-unspecific responses simultaneously in both nerves. When the animal was stimulated vestibulary in the horizontal plane with sinusoidal or constant acceleration, abducens activity was not altered in correlation to passive eye movements in the physiological range. Similarly, the activity of either nerve evoked by simultaneous or preceding optokinetic stimulation of one eye with constant pattern velocity was not modified by passive rotation of the contralateral eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams VC, Rose PK (1975) Projections of extraocular, neck muscle and retinal afferents to superior colliculus in the cat: their connections to cells of origin of tectospinal tract. J Neurophysiol 38: 10–18

    PubMed  CAS  Google Scholar 

  • Allum JHJ, Graf W (1977) Time constants of vestibular nuclei neurons in the goldfish: a model with ocular proprioception. Biol Cybern 28: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Ashton JA, Boddy A, Donaldson IML (1984) Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad, Bufo marinus. Exp Brain Res 53: 409–419

    Article  PubMed  CAS  Google Scholar 

  • Bach-y-Rita P (1972) Extraocular muscle inhibitory stretch reflex during active contraction. Arch Ital Biol 110: 1–15

    PubMed  CAS  Google Scholar 

  • Bach-y-Rita P, Ito F (1966) Properties of stretch receptors in cat extraocular muscles. J Physiol (Lond) 186: 663–688

    CAS  Google Scholar 

  • Baker R, Precht W, Llinás R (1972) Mossy and climbing fiber projections of extraocular muscle afferents to the cerebellum. Brain Res 38: 440–445

    Article  PubMed  CAS  Google Scholar 

  • Cochran SL, Dieringer N, Precht W (1984) Basic optokinetic-ocular reflex pathways in the frog. J Neurosci 4: 43–57

    PubMed  CAS  Google Scholar 

  • Daunicht WJ (1983) Proprioception in extraocular muscles of the rat. Brain Res 278: 291–294

    Article  PubMed  CAS  Google Scholar 

  • Daunicht WJ (1984) Lack of response of oculomotor units to eye muscle stretch in alert rats. Neurosci Lett 18: S231

    Google Scholar 

  • Dieringer N, Daunicht WJ (1986) Image fading — a problem for frogs? Naturwissenschaften 73: 330–331

    Article  PubMed  CAS  Google Scholar 

  • Dieringer N, Precht W (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Exp Brain Res 47: 394–406

    PubMed  CAS  Google Scholar 

  • Dieringer N, Precht W (1986) Functional organization of eye velocity and eye position signals in abducens motoneurons of the frog. J Comp Physiol 158: 179–194

    Article  Google Scholar 

  • Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34: 908–919

    PubMed  CAS  Google Scholar 

  • Ludvigh E (1952) Control of ocular movements and visual interpretation of environment. Arch Ophthalmol 48: 442–448

    CAS  Google Scholar 

  • Maekawa K, Kimura M (1980) Mossy fiber projections to the cerebellar flocculus from extraocular muscle afferents. Brain Res 191: 313–325

    Article  PubMed  CAS  Google Scholar 

  • Maier A, DeSantis M, Eldred E (1974) The occurrence of muscle spindles in extraocular muscles of various vertebrates. J Morph 143: 397–408

    Article  PubMed  CAS  Google Scholar 

  • Meyer DL, Bonnemann D, Schaefer KP (1973) Equalization of asymmetries of tonus in the optomotor system of rabbits. A study on oculomotor neurons. Exp Brain Res 18: 505–511

    Article  PubMed  CAS  Google Scholar 

  • Pettorossi VE, Filippi GM (1981) Muscle spindle autogenic inhibition in the extraocular muscles of lamb. Arch Ital Biol 119: 179–194

    PubMed  CAS  Google Scholar 

  • Sabussow GH, Maslow AP, Burnaschewa DW (1964) Vergleichend-morphologische und einige histochemische Beobachtungen an besonderen Rezeptoren der Augenmuskeln bei Wirbeltieren. Anat Anz 114: 27–37

    PubMed  CAS  Google Scholar 

  • Schaaf P (1979) Muskelspindeln in den äußeren Augenmuskeln der Vertebraten. In: Drischel H, Kirmse W (eds) Das okulomotorische System, physiologische und klinische Aspekte. VEB Georg Thieme, Leipzig, pp 173–180

    Google Scholar 

  • Székely G, Antal N, Göres Th (1980) Direct dorsal root projection onto the cerebellum in the frog. Neurosci Lett 19: 161–165

    Article  PubMed  Google Scholar 

  • Taylor A (1965) The role of sensory feedback in the vestibulo-ocular response in cats. J Physiol (Lond) 179: 76P-77P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daunicht, W.J., Dieringer, N. Extraocular proprioceptive signals affect ocular motor activity neither directly nor parametrically in the presence of optokinetic or vestibular stimulation in the frog. Exp Brain Res 64, 535–540 (1986). https://doi.org/10.1007/BF00340491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340491

Key words

Navigation