Skip to main content
Log in

A mutational analysis of the bacteriophage P1 cin recombinase gene: Intragenic complementation

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Bacteriophage P1 encodes a site-specific recombinase, Cin, which regulates the alternate expression of tail fibre genes by inverting a DNA segment. To define regions of Cin important for the recombination process, we have isolated and characterised 24 different mutations of the cin gene. Most of these mutations affected amino acids that are highly conserved in other related recombinases. Some of these mutants complement each other in vivo. This intragenic complementation could be due to the assembly of heteromers containing both mutant proteins, suggesting that the active enzyme is at least a dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. J Biol Chem 259:1509–1514

    Google Scholar 

  • Bruist MF, Glasgow AC, Johnson RC, Simon MI (1987a) Fis binding to the recombinational enhancer of the Hin DNA inversion system. Genes Dev 1:762–772

    Google Scholar 

  • Bruist MF, Horvath SJ, Hood LE, Steitz TA, Simon MI (1987b) Synthesis of a site-specific DNA binding peptide. Science 235:777–780

    Google Scholar 

  • Carter P, Bedouelle H, Winter G (1985) Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13:4431–4443

    Google Scholar 

  • Grindley NDF, Newman BJ, Wiater LA, Falvey EE (1985) In: Simon M, Herskovitz I (eds) Genome Rearrangement, vol 20, UCLA symposium on molecular and cellular biology. Liss, New York, pp 77–92

    Google Scholar 

  • Haffter P, Bickle TA (1987) Purification and DNA-binding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. J Mol Biol 198:579–587

    Google Scholar 

  • Hatfull GF, Salvo JJ, Falvey EE, Rimphanitchayakit V, Grindley NDP (1988) Site-specific recombination by the γδ resolvase. In: Kingsman AJ, Chater KF, Kingsman SM (eds) Transposition. Cambridge University Press, Cambridge, pp 149–181

    Google Scholar 

  • Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238

    Google Scholar 

  • Heffron F, McCarthy BJ, Ohtsubo H, Ohtsubo E (1979) DNA sequence analysis of the transposon Tn3: Three genes and three sites involved in transposition. Cell 18:1153–1163

    Google Scholar 

  • Heffron F, Kostriken R, Morita C, Parker R (1980) Tn3 encodes a site-specific recombination system: Identification of essential sequences, genes, and the actual site of recombination. Cold Spring Harbor Symp Quant Biol 45:259–268

    Google Scholar 

  • Hiestand-Nauer R, Iida S (1983) Sequence of the site-specific recombinase gene cin and of its substrates serving in the inversion of the C segment of bacteriophage P1. EMBO J 2:1733–1740

    Google Scholar 

  • Huber HE, Iida S, Arber W, Bickle TA (1985a) Site-specific DNA inversion is enhanced by a DNA sequence element in cis. Proc Natl Acad Sci USA 82:3776–3780

    Google Scholar 

  • Huber HE, Iida S, Bickle TA (1985b) Expression of the bacteriophage P1 cin recombinase gene from its own and heterologous promoters. Gene 34:63–72

    Google Scholar 

  • Iida S (1984) Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome. Virology 134:421–434

    Google Scholar 

  • Iida S, Meyer J, Kennedy KE, Arber W (1982) A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the crossover sites cix for the inversion of the C segment. EMBO J 1:1445–1453

    Google Scholar 

  • Johnson RC, Simon MI (1985) Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell 41:781–791

    Google Scholar 

  • Johnson RC, Bruist MF, Glaccum MB, Simon MI (1984) In vitro analysis of Hin-mediated site-specific recombination. Cold Spring Harbor Symp Quant Biol 49:751–760

    Google Scholar 

  • Kahmann R, Rudt F, Koch C, Mertens G (1985) G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41:771–780

    Google Scholar 

  • Kamp D, Chow LT, Broker TR, Kwoh D, Zipser D, Kahmann R (1978) Site-specific recombination in phage Mu. Cold Spring Harbor Symp Quant Biol 43:1159–1167

    Google Scholar 

  • Kamp D, Kardas E, Ritthaler W, Sandulache R, Schmucker R, Stern B (1984) Comparative analysis of invertible DNA in phage genomes. Cold Spring Harbor Symp Quant Biol 49:301–311

    Google Scholar 

  • Kanaar R, van de Putte P, Cozzarelli NR (1988) Gin-mediated DNA inversion: Product structure and the mechanism of strand exchange. Proc Natl Acad Sci USA 85:752–756

    Google Scholar 

  • Klippel A, Mertens G, Patschinsky T, Kahmann R (1988) The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino position 9. EMBO J 7:1229–1237

    Google Scholar 

  • Koch C, Kahmann R (1986) Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. J Biol Chem 261:15673–15678

    Google Scholar 

  • Koch C, Mertens G, Rudt F, Kahmann R, Kanaar R, Plasterk RHA, van de Putte P, Sandulache R, Kamp D (1987) The invertible G segment. In: Symonds N, Toussiant A, van de Putte P, Howe MM (eds) Phage Mu. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 75–91

    Google Scholar 

  • Mertens G, Hoffman A, Blöcker H, Frank R, Kahmann R (1984) Gin-mediated site-specific recombination in bacteriophage Mu DNA: overproduction of the protein and inversion in vitro. EMBO J 3:2415–2421

    Google Scholar 

  • Mertens G, Klippel A, Fuss H, Blöcker H, Framk R, Kahmann R (1988) Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J 7:1219–1227

    Google Scholar 

  • Miller JH (1972) Nitrosoguanidine mutagenesis. In: Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 125–129

    Google Scholar 

  • Minton NP (1984) Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31:269–273

    Google Scholar 

  • Nash HA, Mizuuchi K, Enquist LW, Weisberg RA (1980) Strand exchange in λ integrative recombination: Genetics, biochemistry and models. Cold Spring Harbor Symp Quant Biol 45:417–428

    Google Scholar 

  • Plasterk RHA, van de Putte P (1984) Genetic switches by DNA inversions in prokaryotes. Biochim Biophys Acta 782:111–119

    Google Scholar 

  • Plasterk RHA, Brinkman A, van de Putte P (1983) DNA inversions in the chromosome of Escherichia coli and in bacteriophage MU: Relationship to other site-specific recombination systems. Proc Natl Acad Sci USA 80:5355–5358

    Google Scholar 

  • Reed RR (1981) Transposon-mediated site-specific recombination: A defined in vitro system. Cell 25:713–719

    Google Scholar 

  • Reed RR, Grindley NDF (1981) Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site. Cell 25:721–728

    Google Scholar 

  • Reed RR, Shibuya GI, Steitz JA (1982) Nucleotide sequence of γ δ resolvase gene and demonstration that its gene product acts as a repressor of transcription. Nature 300:381–383

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Silverman M, Zieg J, Mandel G, Simon M (1980) Analysis of the functional components of the phase variation system. Cold Spring Harbor Symp Quant Biol 45:17–26

    Google Scholar 

  • van de Putte P, Plasterk R, Kuijpers A (1984) A Mu gin complementing function and an invertible DNA region in Escherichia coli K12 are situated on the genetic element e14. J Bacteriol 158:517–522

    Google Scholar 

  • Zieg J, Simon M (1980) Analysis of the nucleotide sequence of an invertible controlling element. Proc Natl Acad Sci USA 77:4196–4200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haffter, P., Pripfl, T. & Bickle, T.A. A mutational analysis of the bacteriophage P1 cin recombinase gene: Intragenic complementation. Mol Gen Genet 215, 245–249 (1989). https://doi.org/10.1007/BF00339724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339724

Key words

Navigation