Skip to main content
Log in

Adaptive filter model of the cerebellum

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The Marr-Albus model of the cerebellum has been reformulated with linear system analysis. This adaptive linear filter model of the cerebellum performs a filtering action of a phase lead-lag compensator with learning capability, and will give an account for the phenomena which have been termed “cerebellar compensation”. It is postulated that a Golgi cell may act as a phase lag element; for example, as a leaky integrator with time constant about several seconds. Under this assumption, a mossy fiber-granule cell-Golgi cell input network functions as a phase lead-lag compensator. Output signals from Golgi-granule cell systems, namely, parallel fiber signals, are gathered together through variable synaptic connections to form a Purkinje cell output. From a general theory of adaptive linear filters, learning principles for these modifiable connections are derived. By these learning principles, a Purkinje cell output converges to the “desired response” to minimize the mean square error of the performance. In a more general sense, a Purkinje cell acquires a filtering function on the basis of multiple pairs of input signals and corresponding desired output signals. The mode of convergence of the output signal is described when the input signal is sinusoidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  • Amari, S.: Neural theory of association and concept formation. Biol. Cybern. 26, 175–185 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Amari, S.: Topographic organization of nerve fields. Bull. Math. Biol. 42, 339–364 (1980)

    PubMed  CAS  Google Scholar 

  • Amari, S., Takeuchi, A.: Mathematical theory on formation of category detecting nerve cells. Biol. Cybern. 29, 127–136 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Andersson, G., Oscarsson, O.: Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp. Brain Res. 32, 565–579 (1978)

    PubMed  CAS  Google Scholar 

  • Bell, C.C., Kawasaki, T.: Relations among climbing fiber responses nearby Purkinje cells. J. Neurophysiol. 35, 155–169 (1972)

    PubMed  CAS  Google Scholar 

  • Calvert, T.W., Meno, F.: Neural systems modeling applied to the cerebellum. IEEE Trans. Syst. Man Cybern. SMC-2, 363–374 (1972)

    Article  Google Scholar 

  • Davies, P., Melvill Jones, G.: An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision. Brain Res. 103, 546–550 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Denoth, F., Magherini, P.C., Pompeiano, O., Stanojevic, M.: Responses of Purkinje cells of cerebellar vermis to sinusoidal rotation of neck. J. Neurophysiol. 43, 46–59 (1980)

    PubMed  CAS  Google Scholar 

  • Dufossé, M., Ito, M., Jastreboff, P.J., Miyashita, Y.: A neuronal correlate in rabbit's cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Res. 150, 611–616 (1978)

    Article  PubMed  Google Scholar 

  • Eccles, J.C.: An instruction-selective theory of learning in the cerebellar cortex. Brain Res. 127, 327–352 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J.C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin, Heidelberg, New York: Springer 1967

    Book  Google Scholar 

  • Fernandez, C., Goldberg, J.M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971)

    PubMed  CAS  Google Scholar 

  • Ghelarducci, B., Ito, M., Yagi, N.: Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res. 87, 66–72 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Gonshor, A., Melvill Jones, G.: Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J. Physiol. (London) 256, 381–414 (1976)

    CAS  Google Scholar 

  • Groenewegen, H.J., Voogd, J.: The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber destruction in the vermis of cat cerebellum. J. Comp. Neurol. 174, 417–485 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Hassul, M., Daniels, P.D.: Cerebellar dynamics: The mossy fiber input. IEEE Trans. Biomed. Eng. BME-24, 449–456 (1977)

    Article  CAS  Google Scholar 

  • Higgins, D.C., Partridge, L.D., Glaser, G.H.: A transient cerebellar influence on stretch responses. J. Neurophysiol. 25, 684–692 (1962)

    PubMed  CAS  Google Scholar 

  • Ito, M.: Neural design of the cerebellar motor control system. Brain Res. 40, 81–84 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Ito, M.: Learning control mechanisms by the cerebellum investigated in the flocculo-vestibulo-ocular system. In: The Nervous System, Vol. 1, pp. 245–252, Tower, D.B. (ed). New York: Raven Press, 1975

    Google Scholar 

  • Ito, M.: Recent advances in cerebellar physiology and pathology. In: Advances in Neurology, Vol. 21, pp. 59–84. Kark, R.A., Rosenberg, R.N., Shut, L.J.(eds). New York: Raven Press 1978

    Google Scholar 

  • Ito, M.: Is the cerebellum really a computer? Trends in Neurosciences 2, 122–126 (1979)

    Article  Google Scholar 

  • Ito, M., Sakurai, M., Tongroach, P.: Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324, 113–134 (1982)

    PubMed  CAS  Google Scholar 

  • Lange, W.: Regional differences in the distribution of Golgi cells in the cerebellar cortex of man and some other mammals. Cell Tiss. Res. 153, 219–226 (1974)

    CAS  Google Scholar 

  • Lisberger, S.G., Fuchs, A.F.: Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41, 764–777 (1978)

    PubMed  CAS  Google Scholar 

  • Marr, D.: A theory of cerebellar cortex. J. Physiol. (London) 202, 437–470 (1969)

    CAS  Google Scholar 

  • Miles, F.A., Fuller, J.H., Braitman, D.J., Dow, B.M.: Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J. Neurophysiol. 43, 1437–1476 (1980)

    PubMed  CAS  Google Scholar 

  • Palkovits, M., Magyar, P., Szentagothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Res. 32, 1–13 (1971A)

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Magyar, P., Szentagothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res. 32, 15–30 (1971B)

    Article  PubMed  CAS  Google Scholar 

  • Sakrison, D.J.: Iterative design of optimum filters for non mean-square-error performance criteria. IEEE Trans. Inform. Theor. IT-3, 161–167 (1963)

    Article  Google Scholar 

  • Takahashi, Y., Rabins, M.J., Auslander, D.M.: Control and dynamic systems. Massachusetts: Addison-Wesley 1970

    Google Scholar 

  • Tsukahara, N., Kiyohara, T., Ijichi, Y.: The mode of cerebellar control of pupillary light reflex. Brain Res. 60, 244–248 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Tsypkin, Ya.Z.: Adaptation and learning in automatic systems. In: Mathematics in Science and Engineering, Vol. 73. Bellman, R.(ed). New York: Academic Press 1971

    Google Scholar 

  • Wasan, M.T.: Stochastic approximation. Cambridge: Cambridge University Press 1969

    Google Scholar 

  • Widrow, B., Glover, J.R., McCool, J.M., Kaunitz, J., Williams, C.S., Hearn, R.H., Zeidler, J.R., Dong E., Goodlin, R.C.: Adaptive noise cancelling: Principles and applications. Proc. IEEE 63, 1692–1716 (1975)

    Article  Google Scholar 

  • Widrow, B., Mantey, P.E., Griffiths, L.J., Goode, B.B.: Adaptive antenna systems. Proc. IEEE. 55, 2143–2159 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, M. Adaptive filter model of the cerebellum. Biol. Cybern. 45, 195–206 (1982). https://doi.org/10.1007/BF00336192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336192

Keywords

Navigation