Skip to main content
Log in

Factors governing the adaptation of cells in area-17 of the cat visual cortex

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Neurons in area 17 of the cat visual cortex adapt when stimulated by drifting patterns of optimal orientation, spatial frequency and temporal frequency (Ohzawa et al. 1982; Albrecht et al. 1984; Ohzawa et al. 1985). A component of this adaptation has been attributed to a contrast gain-control mechanism, rather than to neural fatigue, and results in enhanced differential sensitivity around the adapting contrast level (Ohzawa et al. 1982; Albrecht et al. 1984; Ohzawa et al. 1985). Experiments described here suggest that neural response rate, the directional selectivity of the cell, and the temporal frequency of the stimulus, are the principal determinants of adaptation, irrespective of other stimulus parameters such as contrast, velocity, or spatial frequency. The present results can nevertheless accommodate the results of previous studies of adaptation, and additionally provide scope for the resolution of apparent contradictions between results from psychophysical and neurophysiological studies of adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237

    CAS  PubMed  Google Scholar 

  • Albrecht DG, Farrer SB, Hamilton DB (1984) Spatial contrast adaptation characteristics of neurons recorded in the cat's visual cortex. J Physiol 347:713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow HB, Brindley GS (1963) Inter-ocular transfer of movement after-effects during pressure blinding of the stimulated eye. Nature 200:1347

    Article  CAS  PubMed  Google Scholar 

  • Barlow HB, Macleod DIA, van Meeteren A (1976) Adaptation to gratings: no compensatory advantages found. Vision Res 16:1043–1045

    Article  CAS  PubMed  Google Scholar 

  • Blakemore C, Campbell FW (1969) On the existence in the human visual system of neurons selectively sensitive to the orientation and size of retinal images. J Physiol (London) 203:237–260

    Article  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybern 56:209–215

    Article  Google Scholar 

  • Bullier J, Henry GH (1979) Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. J Neurophysiol 42:1251–1263

    CAS  PubMed  Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971a) Sustained and transient neurone in the cat's retina and lateral geniculate nucleus. J Physiol (London) 217:473–497

    Article  CAS  Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971b) Simultaneous recording of input and output of lateral geniculate neurone. Nat New Biol 231:191–192

    Article  CAS  PubMed  Google Scholar 

  • Dobson AJ (1983) An introduction to statistical modelling. Chapman & Hall, London

    Book  Google Scholar 

  • Gilinsky AS (1968) Orientation-specific effects of adapting light on visual acuity. J Opt Soc Am 58:13–18

    Article  CAS  PubMed  Google Scholar 

  • Hammond P (1978) Inadequacy of nitrous oxide/oxygen mixtures for maintaining anaesthesia in cats: satisfactory alternatives. Pain 5:142–151

    Article  Google Scholar 

  • Henry GH (1977) Receptive field classes of cells in the striate cortex of the cat. Brain Res 133:1–28

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (London) 160:106–154

    Article  CAS  Google Scholar 

  • Johnston A, Wright MJ (1983) Visual motion and cortical velocity. Nature 304:436–438

    Article  CAS  PubMed  Google Scholar 

  • Kaplan E, Shapley RM (1984) The origin of theS(slow) potential in the mammalian lateral geniculate nucleus. Exp Brain Res 55:111–116

    Article  CAS  PubMed  Google Scholar 

  • Lorenceau J (1987) Recovery from contrast adaptation: effects of spatial and temporal frequency. Vision Res 27:2185–2191

    Article  CAS  PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1983) Generalized linear models. Chapman & Hall, London

    Book  Google Scholar 

  • McKee SP (1981) A local mechanism for differential velocity detection. Vision Res 21:491–500

    Article  CAS  PubMed  Google Scholar 

  • MacKerras P, Bossomaier T, Maddess T, Laughlin S (1988) Information gains from contrast adaptation (in preparation)

  • Maddess T (1986) Afterimage-like effects in the motion-sensitive neuronH1. Proc R Soc London B 228:433–459

    Article  CAS  Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motionsensitive neuronH1 is generated locally and governed by contrast frequency. Proc R Soc London B 225:251–275

    Article  Google Scholar 

  • Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurons. Nature 278:850–852

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K (1981) Differential motion hyperacuity under conditions of common image motion. Vision Res 21:1475–1482

    Article  CAS  PubMed  Google Scholar 

  • Ohzawa I, Sclar G, Freeman RD (1982) Contrast gain control in the cat visual cortex. Nature 298:266–268

    Article  CAS  PubMed  Google Scholar 

  • Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat visual system. J Neurophysiol 54:651–667

    CAS  PubMed  Google Scholar 

  • Pantle A (1974) Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzers. Vision Res 14:1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Pantle A, Sekuler RW (1968) Size-detecting mechanisms in human vision. Science 162:1146–1148

    Article  CAS  PubMed  Google Scholar 

  • Rodieck RW, Pettigrew JD, Bishop PO, Nikara T (1967) Residual eye movements in receptive field studies of paralyzed cats. Vision Res 7:107–110

    Article  CAS  PubMed  Google Scholar 

  • Santen JPH van, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321

    Article  PubMed  Google Scholar 

  • Sclar G (1987) Expression of “retinal” contrast gain control by neurons of the cat's lateral geniculate nucleus. Exp Brain Res 66:589–596

    Article  CAS  PubMed  Google Scholar 

  • Sekuler R (1975) Visual motion perception. In: Carterette EC, Freeman MP (eds) Seeing. Handbook of perception, vol V. Academic Press, New York, pp 387–430

    Google Scholar 

  • Sekuler R, Pantle A, Levinson E (1978) Physiological basis of motion perception. In: Held R, Leibowitz HW, Teuber H (eds) Perception. Handbook of sensory physiology, vol VIII Springer, Berlin Heidelberg New York, pp 67–98

    Chapter  Google Scholar 

  • Shapley RM, Victor JD (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol London 285:275–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohlhurst DJ, Movshon JA (1975) Spatial and temporal contrast sensitivity of striate cortical neurons. Nature 257:674–675

    Article  Google Scholar 

  • Van Doorn AJ, Koenderink JJ (1983) Detectability of velocity gradients in moving random dot patters. Vision Res 23:799–804

    Article  PubMed  Google Scholar 

  • Weisberg S (1980) Applied linear regression. Wiley, New York

    Google Scholar 

  • Wright MJ, Johnston A (1985) Invariant tuning of motion aftereffect. Vision Res 25:1947–1955

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddess, T., McCourt, M.E., Blakeslee, B. et al. Factors governing the adaptation of cells in area-17 of the cat visual cortex. Biol. Cybern. 59, 229–236 (1988). https://doi.org/10.1007/BF00332911

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332911

Keywords

Navigation