Skip to main content
Log in

Isolation and characterization of Chlamydomonas temperature-sensitive mutants affecting gametic differentiation under nitrogen-starved conditions

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Two conditional mutants of Chlamydomonas reinhardtii, dif-1 and dif-2, affecting gametic differentiation under conditions of nitrogen (N)-starvation, have been isolated. These mutant cells remain “vegetative” at the restrictive temperature (35°C) in — N medium, as defined by assays of cell body-agglutinin and cell wall lytic enzyme activities in the soluble fractions of cell homogenates. Moreover, the mutants fail to form mating structures at the restrictive temperature, but do so at the permissive temperature (25°C). Temperature-shift experiments show that mutant cells which have differentiated into gametes at 25°C dedifferentiate into “vegetative” cells under N-starvation conditions after transfer to 35°C, but differentiate again into gametes at 25°C. Genetic analyses indicate that the dif-1 and dif-2 genes are recessive and unlinked to each other or to the matingtype locus; the dif-1 phenotype cosegregates with a conditional flagellales phenotype expressed in both +N and-N medium at the restrictive temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adair WS (1985) J Cell Sci Suppl 2: 233–260

    Google Scholar 

  • Adair WS, Monk BC, Cohen R, Hwang C, Goodenough UW (1982) J Biol Chem 257: 4593–4602

    Google Scholar 

  • Beach D, Rodgers L, Gould J (1985) Curr Genet 10: 297–311

    Google Scholar 

  • Claes H (1971) Arch Mikrobiol 78: 180–188

    Google Scholar 

  • Ebersold WT (1967) Science 157:447–449

    Google Scholar 

  • Forest CL (1983) Exp Cell Res 148:143–154

    Google Scholar 

  • Forest CL, Togasaki RK (1975) Proc Natl Acad Sci USA 72:3652–3655

    Google Scholar 

  • Forest CL, Togasaki RK (1977) Mol Gen Genet 153: 227–230

    Google Scholar 

  • Friedmann I, Colwin AL, Colwin LH (1968) J Cell Sci 3: 115–128

    Google Scholar 

  • Galloway RE, Goodenough UW (1985) Genetics 111: 447–461

    Google Scholar 

  • Goodenough UW, Ferris PJ (1987) In: Loomis WL (ed) Genetic regulation of development. Alan Liss, New York, pp 171–190

    Google Scholar 

  • Goodenough UW, Hwang C, Martin H (1976) Genetics 82:169–186

    Google Scholar 

  • Goodenough UW, Hwang CJ, Warren AJ (1978) Genetics 89: 235–243

    Google Scholar 

  • Goodenough UW, Detmers PA, Hwang C (1982) J Cell Biol 92: 378–386

    Google Scholar 

  • Goodenough UW, Adair WS, Collin-Osdoby P, Heuser JE (1985) J Cell Biol 101:924–941

    Google Scholar 

  • Gorman DS, Levine RP (1965) Proc Natl Acad Sci USA 54:1665–1669

    Google Scholar 

  • Huang B, Rifkin MR, Luck DJL (1977) J Cell Biol 72:67–85

    Google Scholar 

  • Hwang CJ, Monk BC, Goodenough UW (1981) Genetics 99: 41–47

    Google Scholar 

  • Iino Y, Yamamoto M (1985a) Mol Gen Genet 198:416–421

    Google Scholar 

  • Iino Y, Yamamoto M (1985b) Proc Natl Acad Sci USA 82: 2447–2451

    Google Scholar 

  • Kuchka MR, Jarvik JW (1987) Genetics 115: 685–691

    Google Scholar 

  • Lefebvre PA, Nordstrom SA, Moulder JE, Rosenbaum JL (1978) J Cell Biol 78: 8–27

    Google Scholar 

  • Levine RP, Ebersold WT (1960) Annu Rev Microbiol 14: 197–216

    Google Scholar 

  • Mans RJ, Novelli GD (1961) Arch Biochem Biophys 94: 48–53

    Google Scholar 

  • Matsuda Y (1988) Jpn J Phycol 36:246–264

    Google Scholar 

  • Matsuda Y, Tamaki S, Tsubo Y (1978) Plant Cell Physiol 19:1253–1261

    Google Scholar 

  • Matsuda Y, Sakamoto K, Mizuochi T, Kobata A, Tamura G, Tsubo Y (1981) Plant Cell Physiol 22: 1607–1611

    Google Scholar 

  • Matsuda Y, Sakamoto K, Tsubo Y (1983) Curr Genet 7: 339–345

    Google Scholar 

  • Matsuda Y, Yamasaki A, Saito T, Yamaguchi T (1984) FEBS Lett 166:293–297

    Google Scholar 

  • Matsuda Y, Saito T, Yamaguchi T, Kawase H (1985) J Biol Chem 260: 6373–6377

    Google Scholar 

  • Matsuda Y, Saito T, Yamaguchi T, Koseki M, Hayashi K (1987) J Cell Biol 104: 321–329

    Google Scholar 

  • Matsuda Y, Saito T, Umemoto T, Tsubo Y (1988) Curr Genet 14:53–58

    Google Scholar 

  • Matsuda Y, Saito T, Koseki M, Shimada T (1990) Plant Physiol (Life Sci Adv) (in press)

  • Nurse P (1985) Mol Gen Genet 198: 497–502

    Google Scholar 

  • Pasquale SM, Goodenough UW (1987) J Cell Biol 105:2279–2292

    Google Scholar 

  • Sager R, Granick S (1954) J Gen Physiol 37:729–742

    Google Scholar 

  • Saito T, Matsuda Y (1984) Arch Microbiol 139: 95–99

    Google Scholar 

  • Saito T, Tsubo Y, Matsuda Y (1985) Arch Microbiol 142: 207–210

    Google Scholar 

  • Saito T, Tsubo Y, Matsuda Y (1988) Curr Genet 14: 59–63

    Google Scholar 

  • Snell WJ (1985) Annu Rev Plant Physiol 36: 287–315

    Google Scholar 

  • Tsubo Y, Matsuda Y (1984) Curr Genet 8: 223–229

    Google Scholar 

  • Wiese L (1965) J Phycol 1: 46–54

    Google Scholar 

  • Witman GB, Carlson K, Berliner J, Rosenbaum JL (1972) J Cell Biol 54: 507–539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by: K.P. Van Winkle-Swift

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Matsuda, Y. Isolation and characterization of Chlamydomonas temperature-sensitive mutants affecting gametic differentiation under nitrogen-starved conditions. Curr Genet 19, 65–71 (1991). https://doi.org/10.1007/BF00326284

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326284

Key words

Navigation