Skip to main content
Log in

The ultrastructure of sensory nerve endings in human anterior cruciate ligament

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The sensory innervation of the anterior cruciate ligament (ligamentum cruciatum anterius) of the human knee joint was studied by light-and electron microscopy. The connective tissue between the synovial membrane and the cruciate ligament contains small Ruffini corpuscles and lamellar corpuscles with several inner cores. The connective tissue septa between the individual fascicles of the cruciate ligament contain Ruffini corpuscles and free nerve endings. The free nerve endings are innervated by C-fibres and myelinated A-delta fibres. The afferent axons of Ruffini corpuscles are myelinated and measure 4–6 μm in diameter, those of the lamellar corpuscles with several inner cores measure about 6 μm in diameter.

It is discussed, whether these receptors of the anterior cruciate ligament may influence the muscle tone via polysynaptic reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andres KH (1966) Über die Feinstruktur der Rezeptoren an Sinushaaren. Z Zellforsch 75:339–365

    Google Scholar 

  • Andres KH, von Düring M, Schmidt RF (1985) Sensory innervation of the Achilles tendon by group III and IV afferent fibers. Anat Embryol 172:145–156

    Google Scholar 

  • Barnett CH, Davies DV, MacConail MA (1961) Synovial joints: their structure and mechanics. Longmans, Green and Company, London

    Google Scholar 

  • Baxendale RH, Ferrell WR (1981) The effect of knee joint afferent discharge on transmission in flexion reflex pathways in decerebrate cats. J Physiol (Lond) 315:231–242

    Google Scholar 

  • Biemesderfer D, Munger BL, Binck J, Dubner R (1978) The pilo-Ruffini complex: a non-sinus hair and associated slowly-adapting mechanoreceptor in primate facial skin. Brain Res 142:197–222

    Google Scholar 

  • Boyd IA (1954) The histological structure of the receptors in the knee-joint of the cat correlated with their physiological response. J Physiol (Lond) 124:466–488

    Google Scholar 

  • Boyd IA, Roberts TD (1953) Proprioceptive discharges from stretch-receptors in the knee joint of the cat. J Physiol (Lond) 122:38–58

    Google Scholar 

  • Chambers MR, Andres KH, von Düring M, Iggo A (1972) The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Quart J Exptl Physiol 57:417–445

    Google Scholar 

  • Dreessen D, Halata Z, Strasmann T (1987) Distribution and structure of mechanoreceptors in the mandibular joint of STR/1N mice. In: Hnik P, Soukup T, Vejsada R, Zelena J (eds) Mechanoreceptors. Development, Structure and Function. Plenum Press. New York pp 347–348

    Google Scholar 

  • Ferrell WR (1980) The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. J Physiol (Lond) 299:85–99

    Google Scholar 

  • Ferrell WR (1985) The response of slowly adapting mechanoreceptors in the cat knee joint to tetanic contraction of hind limb muscles. Quart J Exptl Physiol 70:337–345

    Google Scholar 

  • Ferrell WR (1988) Discharge characteristics of joint receptors in relation to their proprioceptive role. In: Hnik, P, Soukup T, Vejsada R, Zelena J (eds) Mechanoreceptors. Development, Structure and Function. Plenum Press, New York and London, pp 383–388

    Google Scholar 

  • Freeman MAR, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat (Lond) 101:505–532

    Google Scholar 

  • Gottschaldt K-M, (1973) Mechanoreptoren als Grundlage des Tastsinnes. Biologie in unserer Zeit 3:184–190

    Google Scholar 

  • Grigg P (1975) Mechanical factors influencing response of joint afferent neurons from cat knee. J Neurophysiol 38:1473–1484

    Google Scholar 

  • Grigg P, Hoffman AH (1984) Ruffini mechanoreceptors in isolated joint capsule: response correlated with strain energy density. Somatosens Res 2:149–162

    Google Scholar 

  • Grigg P, Finerman GA, Riley LH (1973), Joint position sense after total hip replacement. J Bone Joint Surg 55A: 1016–1025

    Google Scholar 

  • Grigg P, Hoffman AH, Fogarty KE (1982) Properties of Golgi-Mazzoni afferents in cat knee joint capsule, as revealed by mechanical studies of isolated joint capsule. J Neurophysiol 47:31–40

    Google Scholar 

  • Grüber J, Wolter D, Lierse W (1986) Der vordere Kreuzbandreflex (LAC-Reflex). Unfallchirurgie 89:551–554

    Google Scholar 

  • Halata Z (1977) The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles). J Anat (Lond) 124:717–729

    Google Scholar 

  • Halata Z (1988) Ruffini corpuscle—a stretch receptor in the connective tissue of the skin and locomotion apparatus. In: Hamann W, Iggo A (eds) Progress in Brain Research 74:221–229

  • Halata Z, Groth H-P (1976) Innervation of the synovial membrane of cat knee joint capsule. Cell Tissue Res 169:415–418

    Google Scholar 

  • Halata Z, Munger BL (1980) The ultrastructure of the Ruffini and Herbst corpuscles in the articular capsule of domestic pigeon. Anat Rec 198:681–692

    Google Scholar 

  • Halata Z, Badalamente MA, Dee R, Propper M (1984) Ultrastructure of sensory nerve endings in monkey (Macaca fascicularis) knee joint capsule. J Orthopedic Res 2:169–176

    Google Scholar 

  • Halata Z, Rettig T, Schulze W (1985) The ultrastructure of sensory perve endings in the human knee joint capsule. Anat Embryol 172:265–275

    Google Scholar 

  • Haus J, Refior HJ (1987) A study of the synovial and ligamentous structure of the anterior cruciate ligament. Int Orthopedics (SICOT) 11:117–124

    Google Scholar 

  • Huson A (1974) Biomechanische Probleme des Kniegelenks. Orthopaede 3:119–126

    Google Scholar 

  • Iggo A, Anders KH (1982) Morphology of cutaneous receptors. Ann Rev Neurosci 5:1–31

    Google Scholar 

  • Karnovsky J (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A-138A

    Google Scholar 

  • Kruger L (1987) Morphological correlates of “free” nerve endings — a reappraisal of thin sensory axon classifloation. In: Schmidt RF, Schaible H-G, Vahle-Hinz C (eds) Fine afferent nerve fibers and pain. VCH Weinheim New York pp 3–13

    Google Scholar 

  • Kruger L, Perl ER, Sedivec MJ (1981) Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J Comp Neurol 198:137–154

    Google Scholar 

  • Laczko J, Levai G (1975) A simple differential staining method for semi-thin sections of ossyfying cartilage and bone tissue embedded in epoxy resin. Mikroskopie 31:1–4

    Google Scholar 

  • Loewenstein WR (1971) Mechano-electric transduction in the Pacinian corpuscle. Initiation of sensory impulses in mechanoreceptors. In: Loewenstein WR (ed) Principles of Sensory Physology. Springer, Berlin, pp 269–290

    Google Scholar 

  • Loewenstein WR, Skalak R (1966) Mechanical transmission in a Pacinian corpuscle. An analysis and theory. J Physiol (Lond) 182, 246–278

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Google Scholar 

  • Lundberg A, Malmgren K, Schomberg ED (1978) Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. Physiol (Lond) 284:327–343

    Google Scholar 

  • McCloskey DI (1978) Kinesthetic sensibility. Physiol Rev 58:763–820

    Google Scholar 

  • Menschik A (1974) Mechanik des Kniegelenkes, Teil 1. Z Orthop 112:481–495

    Google Scholar 

  • Menschik A (1975) Mechanik des Kniegelenkes, Teil 2. Orthop 113:388–400

    Google Scholar 

  • Müller W (1982) Das Knie. Form, Funktion und ligamentäre Wiederherstellungschirurgie. Springer, Berlin Heidelberg

    Google Scholar 

  • Polacek P (1966) Receptors of the joints. Their structure, variability and classification. Acta Fac Med Univ Brunensis 23:1–107

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque staining in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Rosenberg M, Bartl P, Lesko J (1960) Water-soluble metacrylate as an embedding medium for the preparation of ultrathin sections. J Ultrastruct Res 4:298–303

    Google Scholar 

  • Schmidt RF (1971) Möglichkeiten und Grenzen der Hautsinne. Klin Wschr 49:530–540

    Google Scholar 

  • Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruciate ligaments. J Bone Joint Surg 66-A:1072–1076

    Google Scholar 

  • Schutte MJ, Dabezies EJ, Zimny ML, Happel LT (1987) Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg 69:243–247

    Google Scholar 

  • Silbermann M, Livne E (1979) Age-related degenerative changes in the mouse mandibular joint. J Anat (Lond) 129:507–520

    Google Scholar 

  • Skoglund S (1956) Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand Suppl 124 36:1–101

    Google Scholar 

  • Spray DC (1986) Cutaneous temperature receptors. Ann Rev Physiol 48:625–638

    Google Scholar 

  • Strasmann T, Halata Z, Loo SK (1987) Topography and ultrastructure of sensory nerve endings in the joint capsules of the kowari (Dasyuroides Byrnei), an Australian marsuplal Anat Embryol 176:1–12

    Google Scholar 

  • van Mameren H (1983) Reaction forces in a model of the human elbow joint. Verh Anat Ges 77:323–328

    Google Scholar 

  • van Mameren H, Drukker J (1984) A functional basis of injuries to the ligaments and other soft tissue around the elbow joint. Int J Sports Med 5:88–92

    Google Scholar 

  • van der Wal JC, Strasmann T, Drukker J, Halata Z (1987) The occurrence of sensory nerve endings in the lateral cubital region of the rat in relation to the architecture of the connective tissue. Acta Anat (Basel) 130:94

    Google Scholar 

  • Zelena J (1978) The development of Pacinian corpuscle. J Neurocytol 7:71–91

    Google Scholar 

  • Zelena J (1981) Multiple innervation of rat Pacinian corpuscles regenerated after neonatal axotomy. Neuroscience 6:1675–1686

    Google Scholar 

  • Zelena J (1984a) The effect of long-term denervation on the ultrastructure of Pacinian corpuscle in the cat. Cell Tissue Res 238:387–394

    Google Scholar 

  • Zelena J (1984b) Multiple axon terminals in renervated Pacinian corpuscles of adult rat. J Neurocytol 13:665–684

    Google Scholar 

  • Zelena J, Jirmanova I (1988) Grafts of Pacinian corpuscles reinnervated by dorsal root axons. Brain Res 438:165–174

    Google Scholar 

  • Zimny ML (1988) Mechanoreceptors in articular tissues. Am J Anat 182:16–32

    Google Scholar 

  • Zimny ML, Schutte M, Dabezies E (1986) Mechanoreceptors in the human anterior cruciate ligament. Anat Rec 214:204–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Verein zur Förderung der Erforschung und Bekämpfung rheumatischer Krankheiten e.V., Bad Bramstedt and DFG (Ha 1194/3-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halata, Z., Haus, J. The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol 179, 415–421 (1989). https://doi.org/10.1007/BF00319583

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319583

Key words

Navigation