Skip to main content
Log in

Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aepli F, Labhart T, Meyer EP (1985) Structural specializations of the cornea and retina at the dorsal rim of the compound eye in hymenopteran insects. Cell Tissue Res 239:19–24

    Google Scholar 

  • Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10

    Google Scholar 

  • Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jb Physiol 83:502–525

    Google Scholar 

  • Caveney S (1986) The phylogenetic significance of ommatidium structure in the compound eyes of polyphagan beetles. Can J Zool 64:1787–1819

    Google Scholar 

  • Couturier A, Robert P (1956) Principaux aspects de l'orientation astronomique chez le hanneton commun. Bull Soc Hist Nat Colmar 47:27–40

    Google Scholar 

  • Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 86:37–53

    Google Scholar 

  • Egelhaaf A, Dambach M (1983) Giant rhabdomes in a specialized region of the compound eye of a cricket: Cycloptiloides canariensis (Insecta, Gryllidae). Zoomorph 102:65–77

    Google Scholar 

  • Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. Dissertation, Universität Zürich

  • Frisch K von (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwiss 35:38–43

    Google Scholar 

  • Frisch K von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Google Scholar 

  • Gokan N (1973) The compound eyes of the lamellicorn leaf-chafers and the relation between their structures and activities. Kontyu, Tokyo 41:106–125

    Google Scholar 

  • Gokan N (1982) The compound eye of the soybean beetle Anomala rufocuprea Motschulsky (Coleoptera, Scarabaeidae). Appl Ent Zool 17:227–237

    Google Scholar 

  • Gokan N (1989) The compound eye of the dung beetle Geotrupes auratus (Coleoptera, Scarabaeidae). Appl Ent Zool 24:133–146

    Google Scholar 

  • Gokan N (1990) Fine structure of the compound eye of the dung beetle, Onthophagus lenzii (Coleoptera, Scarabaeidae). Jap J Entomol 58:185–195

    Google Scholar 

  • Gokan N, Nagashima T, Narita R (1986) Ultrastructure of the compound eye of the dynastine beetles, Allomyrina dichotomus and Eophileurus chinensis (Coleoptera, Scarabaeidae). Kontyu, Tokyo 54:386–395

    Google Scholar 

  • Gokan N, Nagashima T, Meyer-Rochow VB (1987) Ultrastructure of the compound eye of Serica takagii Sawada and S. nigrovariata Lewis (Coleoptera, Scarabaeidae). J Agric Sci, Tokyo 32:10–28

    Google Scholar 

  • Goldsmith TH, Wehner R (1977) Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol 70:453–490

    Google Scholar 

  • Gribakin FG (1988) Photoreceptor optics of the honeybee and its eye colour mutants: the effect of screening pigments on the long-wave subsystem of colour vision. J Comp Physiol [A] 164:123–140

    Google Scholar 

  • Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol [A] 154:157–165

    Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Hardie RC (ed) Progress in sensory physiology. Springer, Berlin Heidelberg New York, pp 1–79

    Google Scholar 

  • Helversen O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol 94:33–47

    Google Scholar 

  • Herrling PL (1976) Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tissue Res 169:247–266

    Google Scholar 

  • Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study. J Comp Physiol [A] 165:315–319

    Google Scholar 

  • Horridge GA, Giddings C (1971) Movement of dark-light adaptation in beetle eyes of the neuropteran type. Proc R Soc Lond [Biol] 179:73–85

    Google Scholar 

  • Horridge GA, McLean M, Stange G, Lillywhite PG (1977) A diurnal moth superposition eye with high resolution Phalaenoides tristifica (Agaristidae). Proc R Soc Lond [Biol] 196:233–250

    Google Scholar 

  • Israelachvili JN, Wilson M (1976) Absorption characteristics of oriented photopigments in microvilli. Biol Cybernetics 21:9–15

    Google Scholar 

  • Johnson GC (1969) Migration and dispersal of insects by flight. Methuen & Co, London

    Google Scholar 

  • Kirschfeld K (1969) Absorption properties of photopigments in single rods and rhabdomeres. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, New York, pp 116–136

    Google Scholar 

  • Kolb G (1985) Ultrastructure and adaptation in the retina of Aglais urticae (Lepidoptera). Zoomorph 105:90–98

    Google Scholar 

  • Kolb G (1986) Retinal ultrastructure in the dorsal rim and large dorsal area of the eye of Aglais urticae (Lepidoptera). Zoomorph 106:244–246

    Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30

    Google Scholar 

  • Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol [A] 158:1–7

    Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437

    Google Scholar 

  • Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol [A] 155:289–296

    Google Scholar 

  • Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol [A] 154:515–533

    Google Scholar 

  • Meinecke CC (1981) The fine structure of the compound eye of the African armyworm moth, Spodoptera exempta Walk. (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347

    Google Scholar 

  • Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee's compound eye. Cell Tissue Res 216:491–501

    Google Scholar 

  • Meyer-Rochow VB, Gokan N (1987) Fine structure of the compound eye of the Asiatic garden beetle Maladera castanea Arrow (Coleoptera, Scarabaeidae). Appl Ent Zool 22:358–369

    Google Scholar 

  • Meyer-Rochow VB, Horridge GA (1975) The eye of Anoplognathus (Coleoptera, Scarabaeidae). Proc R Soc Lond [Biol] 188:1–30

    Google Scholar 

  • Nilsson DE (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 29–73

    Google Scholar 

  • Nilsson DE, Labhart T, Meyer EP (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol [A]: 161:645–658

    Google Scholar 

  • Philipsborn A von, Labhart T (1990) A behavioural study of polarization vision in the fly, Musca domestica. J Comp Physiol [A] 167:737–743

    Google Scholar 

  • Räber F (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandter Formiciden-Arten. Dissertation, Uni versität Zürich

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Schinz R (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162:23–34

    Google Scholar 

  • Schneider F (1967) Schwärmbahnen der Maikäfer. In: Hediger H (ed) Die Strassen der Tiere. Vieweg & Son, Braunschweig, pp 256–278

    Google Scholar 

  • Strausfeld NJ, Wunderer H (1985) Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res 242:163–178

    Google Scholar 

  • Streck P (1972) Der Einfluss des Schirmpigmentes auf das Sehfeld einzelner Sehzellen der Fliege Calliphora erythrocephala Meig. J Comp Physiol 76:372–402

    Google Scholar 

  • Wada S (1974) Spezielle randzonale Ommatidien von Calliphora erythrocephala Meig. (Diptera: Calliphoridae): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int J Insect Morphol Embryol 3:397–424

    Google Scholar 

  • Warrant EJ, McIntyre PD (1990) Limitations to resolution in superposition eyes. J Comp Physiol [A] 167:785–803

    Google Scholar 

  • Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low f-number. J Comp Physiol [A] 168:499–512

    Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neujahrsblatt Naturforsch Ges Zürich 5

  • Wehner R, Rossel S (1985) The bee's celestial compass — a case study in behavioural neurobiology. In: Hölldobler B, Lindauer M (eds) Experimental behavioural ecology and sociobiology. Fischer, Stuttgart New York, pp 11–53

    Google Scholar 

  • Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioural evidence. Physiol Entomol 10:337–349

    Google Scholar 

  • Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245

    Google Scholar 

  • Welsch B (1977) Ultrastruktur und funktionelle Morphologie der Augen des Nachtfalters Deilephila elpenor (Lepidoptera, Sphingidae). Cytobiologie 14:378–400

    Google Scholar 

  • Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol 139:177–191

    Google Scholar 

  • Wunderer H, Smola U (1982a) Morphological differentiation of the central visual cells R7/8 in various regions of the blowfly eye. Tissue Cell 14:341–358

    Google Scholar 

  • Wunderer H, Smola U (1982b) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera, Calliphoridae): an eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labhart, T., Meyer, E.P. & Schenker, L. Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell Tissue Res 268, 419–429 (1992). https://doi.org/10.1007/BF00319148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319148

Key words

Navigation