Skip to main content
Log in

Neocortical layers I and II of the hedgehog (Erinaceus europaeus)

I. Intrinsic organization

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer.

Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution.

Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbie AA (1940) Cortical lamination in the monotremata. J Comp Neurol 72:429–467

    Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 3, Hafner Publ Comp, New York

    Google Scholar 

  • Barón M, Gallego A (1971) Cajal cells of the rabbit cerebral cortex. Experientia 27:430–432

    Google Scholar 

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709

    Google Scholar 

  • Bradford R, Parnavelas JG, Lieberman AR (1977) Neurons in layer I of the developing occipital cortex of the rat. J Comp Neurol 176:121–132

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Johann Ambrosius Barth, Leipzig, pp 193–197

    Google Scholar 

  • Burton M (1969) The hedgehog. Andre Deutsch, London

    Google Scholar 

  • Cajal SR (1890) Sobre la existencia de células nerviosas especiales en la primera capa de las circunvoluciones cerebrales. Gac Med Catal, December 15

  • Cajal SR (1891) Sur la structure de l'écorce cérébrale de quelques mammifères. Cellule 7:123–176

    Google Scholar 

  • Cajal SR (1893) Neue Darstellung vom histologischen Bau des Centralnervensystems. Arch Anat Physiol, Anat Abtheil (Leipzig) 319–428

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertébrés, vol. II. Maloine, Paris, Reimpress 1955, Instituto Cajal, CSIC, Madrid

    Google Scholar 

  • Clark WE LeGros (1932) The brain of the insectivora. Proc Zool Soc (Lond) 102:975–1013

    Google Scholar 

  • DeFelipe J, Fairén A (1982) A type of basket cell in superficial layers of the cat visual cortex. a Golgi-electron microscope study. Brain Res 244:9–16

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG, Schmechel D (1985) Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensorymotor cortex. J Comp Neurol 231:364–384

    Google Scholar 

  • Diamond IT (1967) The sensory neocortex. In: Neff WD (ed) Contributions of sensory physiology, Vol. 2, Academic Press, New York pp 51–100

    Google Scholar 

  • Diamond IT, Hall WC (1969) Evolution of neocortex. Science 164:251–262

    Google Scholar 

  • Ebner FF (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann New York Acad Sci 167:241–257

    Google Scholar 

  • Elliot Smith G (1902) Catalogue of the physiological series in the Hunterian Museum of Royal College of Surgeons, vol. 2, London

  • Elliot Smith G (1910) Some problems relating to the evolution of the brain. Lancet 1:1–6, 147–155, 221–227

    Google Scholar 

  • Fairén A, DeFelipe J, Regidor J (1984) Nonpyramidal neurons: general account. In: Peters A, Jones EG (eds) Cerebral cortex, Vol. 1, Plenum Press, New York pp 201–253

    Google Scholar 

  • Filimonoff IN (1964) Homologies of the cerebral formations of mammals and reptiles. J Hirnforsch 7:229–251

    Google Scholar 

  • Flores A (1911) Die Myeloarchitektonik und die Myelogenie des Cortex Cerebri beim Igel (Erinaceus europaeus). J Psychol Neurol (Leipzig) 17:215–247

    Google Scholar 

  • Fex MW, Inman O (1966) Persistence of Retzius-Cajal cells in developing dog brain. Brain Res 3:192–194

    Google Scholar 

  • Freund TF, Martin KAC, Smith AD, Somogyi P (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex. J Comp Neurol 221:263–278

    Google Scholar 

  • Haberly LB (1983) Structure of the piriform cortex of the opossum. I. Description of neuron types with Golgi methods. J Comp Neurol 213:163–187

    Google Scholar 

  • Haberly LB, Price JL (1978) Association and commissural fiber systems of the olfactory cortex of the rat. I. Systems originating in the piriform cortex and adjacent areas. J Comp Neurol 178:711–740

    Google Scholar 

  • Heimer L (1969) The secondary olfactory connections in mammals, reptiles and sharks. Ann New York Acad Sci 167:129–146

    Google Scholar 

  • Heimer L, Kalil R (1978) Rapid transneuronal degeneration and death of cortical neurons following removal of the olfactory bulb. J Comp Neurol 178:559–609

    Google Scholar 

  • Herrick CD (1921) A sketch of the origin of the cerebral hemispheres. J Comp Neurol 32:429–454

    Google Scholar 

  • Johnston JB (1909) The morphology of the forebrain vesicle in vertebrates. J Comp Neurol 19:457–539

    Google Scholar 

  • Johnston JB (1911) The telencephalon of selachians. J Comp Neurol 21:1–112

    Google Scholar 

  • Jones EG, Hendry SHC (1984) Basket cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol. 1 Plenum Press, New York pp 309–336

    Google Scholar 

  • Kölliker A (1893) Handbuch der Gewebelehre des Menschen. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • König N, Valat J, Fulcrand J, Marty R (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex: an autoradiographic study. Neurosci Lett 4:21–26

    Google Scholar 

  • Kuhlenbeck H (1965) Gehirn und Intelligenz. Confin Neurol 25:35–62

    Google Scholar 

  • Lende RA (1969) A comparative approach to the neocortex: localization in monotremes, marsupials and insectivores. Ann New York Acad Sci 167:262–275

    Google Scholar 

  • Lende RA, Sadler KM (1967) Sensory and motor areas in neocortex of hedgehog (Erinaceus). Brain Res 5:390–405

    Google Scholar 

  • Loo YT (1931) The forebrain of the opossum, Didelphys virginiana. II. Histology. J Comp Neurol 52:1–148

    Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organisation. Z Anat Entwickl-Gesch 134:117–145

    Google Scholar 

  • Marin-Padilla M (1984) Neurons of layer I. A developmental analysis. In: Perers A, Jones EG (eds) Cerebral cortex, Vol. 1, Plenum Press, New York pp 447–478

    Google Scholar 

  • Marin-Padilla M, Marin-Padilla TM (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. Anat Embryol 164:161–206

    Google Scholar 

  • Martin KAC (1984) Neuronal circuits in cat striate cortex. In: Peters A, Jones EG (eds) Cerebral cortex, Vol 2. Plenum Press, New York pp 241–284

    Google Scholar 

  • Marty R, Pujol R (1966) Maturation post-natale de l'aire visuelle du cortex cérébral chez le chat. In: Hassler R, Stephan H (eds) Evolution of the forebrain, Georg Thieme, Stuttgart pp 405–418

    Google Scholar 

  • McKenna MG (1969) The origin and early differentiation of therian mammals. Ann New York Acad Sci 167:217–240

    Google Scholar 

  • Molliver ME, Van der Loos H (1970) The ontogenesis of cortical circuitry: the spatial distribution of synapses in somesthetic cortex of newborn dog. Adv Anat Embryol Cell Biol 42(4):1–54

    Google Scholar 

  • Noback CR, Purpura DP (1961) Postnatal ontogenesis of neurons in cat neocortex. J Comp Neurol 117:291–307

    Google Scholar 

  • O'Leary JL (1937) Structure of the primary olfactory cortex of the mouse. J Comp Neurol 150:217–238

    Google Scholar 

  • Oppermann K (1929) Cajal sche Horizontalzellen und Ganglienzellen des Marks. Z Neurol Psychiat 120:121–137

    Google Scholar 

  • Parnavelas JG, Edmunds SM (1983) Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex. J Neurocytol 12:863–871

    Google Scholar 

  • Peters A (1984) Chandelier cells. In: Peters A, Jones EG (eds) Cerebral cortex, Vol. 1, Plenum Press, New York pp 361–380

    Google Scholar 

  • Raedler A, Sievers J (1975) The development of the visual system of the albino rat. Adv Anat Embryol Cell Biol 50:1–88

    Google Scholar 

  • Raedler E, Raedler A, Feldhaus S (1980) Dynamic aspects of neocortical histogenesis in the rat. Anat Embryol 158:253–269

    Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    Google Scholar 

  • Reep R (1984) Relationship between prefrontal and limbic cortex: a comparative anatomical review. Brain Behav Evol 25:5–80

    Google Scholar 

  • Retzius G (1893) Die Cajal'sche Zellen der Großhirnrinde beim Menschen und bei Säugethieren. Biol Untersuch 5:1–8

    Google Scholar 

  • Rickmann M, Wolff JR (1976) on the earliest stages of glial differentiation in the neocortex of rat. Exp Brain Res Suppl 1:239–243

    Google Scholar 

  • Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol 151:285–307

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology. The University of Chicago Press, Chicago

    Google Scholar 

  • Sanides D, Sanides F (1974) A comparative Golgi study of the neocortex in insectivores and rodents. Z Mikr-Anat Forsch 88:957–977

    Google Scholar 

  • Sanides F (1968) The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationships to insular, sensorimotor and prefrontal regions. Brain Res 8:97–124

    Google Scholar 

  • Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Noback CR, Montagna W (eds) Advances in primatology, Vol. 1, Appleton-Century-Crofts, New York pp 137–208

    Google Scholar 

  • Sanides F, Sanides D (1972) The “extraverted neurons” of the mammalian cerebral cortex. Z Anat Entwickl-Gesch 136:272–293

    Google Scholar 

  • Sas E, Sanides F (1970) A comparative Golgi study of Cajal foetal cells. Z Mikr-Anat Forsch 82:385–396

    Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Somogyi P, Freund TF, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7:2577–2607

    Google Scholar 

  • Somogyi P, Kisvárday ZF, Martin KAC, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294

    Google Scholar 

  • Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149

    Google Scholar 

  • Sousa-Pinto A, Paula-Barbosa M, Matos MC (1975) A Golgi and electron microscopical study of nerve cells in layer I of the cat auditory cortex. Brain Res 95:443–458

    Google Scholar 

  • Stephan H (1956) Vergleichend-anatomische Untersuchungen an Insektivorengehirne. Gegenbaurs Morphol Jahr 97:123–142

    Google Scholar 

  • Stephan H (1967) Zur Entwicklungshöhe der Insektivoren nach Merkmalen des Gehirns und die Definition der “Basale Insektivoren”. Zool Anz 179:177–199

    Google Scholar 

  • Szentágothai J (1973) Synaptology of the visual cortex. In: Jung R (ed) Handbook of sensory physiology, Vol. VII/3, Central processing of visual information, part B, Visual centers in the brain. Springer, Berlin-Heidelberg-New York, pp 269–324

    Google Scholar 

  • Valverde F (1965) Studies on the piriform lobe. Harvard University Press, Cambridge Mass

    Google Scholar 

  • Valverde F (1970) The Golgi method: a tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy, Springer, Berlin-Heidelberg-New York pp 12–31

    Google Scholar 

  • Valverde F (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus). In: Grisolía S, Guerri C, Samson F, Norton S, Reinoso-Suárez (eds) Ramón y Cajal's contribution to the neurosciences, Elsevier, Amsterdam pp 149–170

    Google Scholar 

  • Valverde F (1985a) The organizing principles of the primary visual cortex in the monkey. In: Peters A, Jones EG (eds) Cerebral cortex, Vol. 3, Plenum Press, New York, pp 207–257

    Google Scholar 

  • Valverde F (1985b) Intrinsic neocortical organization: some comparative aspects. Neuroscience (submitted)

  • Valverde F, López-Mascaraque L (1981) Neocortical endeavor: basic neuronal organization in the cortex of hedgehog. In: Vidrio EA, Fedoroff S (eds) Glial and neuronal cell biology, Eleventh Int Cong Anat, part A Alan R Liss, New York pp 281–290

    Google Scholar 

  • Van Valen L (1967) New Paleocene insectivores and insectivore classification. Bull Am Mus Nat Hist 135:217–284

    Google Scholar 

  • Westrum LE (1966) Electron microscopy of degeneration in the praepyriform cortex. J Anat (Lond) 100:683–685

    Google Scholar 

  • Wolff JR (1978) Ontogenetic aspects of cortical architecture: lamination. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex, Raven Press, New York pp 159–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valverde, F., Facal-Valverde, M.V. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). Anat Embryol 173, 413–430 (1986). https://doi.org/10.1007/BF00318926

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318926

Key words

Navigation