Skip to main content
Log in

Distribution of catecholaminergic and serotoninergic systems in forebrain and midbrain of the newt, Triturus alpestris (Urodela)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Mapping of monoaminergic systems in the brain of the newt Triturus alpestris was achieved with antisera against (1) thyrosine hydroxylase (TH), (2) formaldehyde-conjugated dopamine (DA), and (3) formaldehyde-conjugated serotonin (5-HT). In the telencephalon, the striatum was densely innervated by a large number of 5-HT-, DA-and TH-immunoreactive (IR) fibers; IR fibers were more scattered in the amygdala, the medial and lateral forebrain bundles, and the anterior commissure. In the anterior and medial diencephalon, TH-IR perikarya contacting the cerebrospinal fluid (CSF-C perikarya) were located in the preoptic recess organ (PRO), the organum vasculosum laminae terminalis and the suprachiasmatic nucleus. Numerous TH-IR perikarya, not contacting the CSF, were present in the posterior preoptic nucleus and the ventral thalamus. At this level, DA-IR CSF-C neurons were only located in the PRO. In the posterior diencephalon, large populations of 5-HT-IR and DA-IR CSF-C perikarya were found in the paraventricular organ (PVO) and the nucleus infundibularis dorsalis (NID); the dorsal part of the NID additionally presented TH-IR CSF-C perikarya. Most regions of the diencephalon showed an intense monoaminergic innervation. In addition, numerous TH-IR, DA-IR and 5-HT-IR fibers, orginating from the anterior and posterior hypothalamic nuclei, extended ventrally and reached the median eminence and the pars intermedia of the pituitary gland. In the midbrain, TH-IR perikarya were located dorsally in the pretectal area. Ventrally, a large group of TH-IR cell bodies and some weakly stained DA-IR and 5-HT-IR neurons were observed in the posterior tuberculum. No dopaminergic system equivalent to the substantia nigra was revealed. The possible significance of the differences in the distribution of TH-IR and DA-IR neurons is discussed, with special reference to the CSF-C neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AM :

amygdala

CAnt :

commissura anterior

CH :

commissura hippocampi

CP :

commissura posterior

Ctm :

commissura tecti mesencephali

DH :

dorsal hypothalamus

DTh :

dorsal thalamus

FLM :

fasciculus longitudinalis medialis

Fsol :

fasciculus solitarius

H :

habenula

LFB :

lateral forebrain bundle

ME :

median eminence

MFB :

medial forebrain bundle

NID :

nucleus infundibularis dorsalis

nIP :

neuropil of nucleus interpeduncularis

NPOP :

nucleus preopticus posterior

NS :

nucleus septi

OVLT :

organum vasculosum laminae terminalis

PD :

pars distalis

Pdo :

dorsal pallium

PHi :

primordium hippocampi

PI :

pars intermedia

Pl :

lateral pallium

PN :

pars nervosa

PRO :

preoptic recess organ

Ptec :

pretectal area

PVO :

paraventricular organ

Ra :

nucleus raphe

Rm :

nucleus reticularis medius

SCO :

subcommisural organ

ST :

striatum; strm stria medullaris thalami

strt :

stria terminalis thalami

TM :

tegmentum mesencephali

TO :

tectum opticum

TP :

tuberculum posterius

trch :

tractus cortico-habenularis

trmp :

tractus mamillopeduncularis

VH :

ventral hypothalamus

Vm :

nucleus motorius nervi trigemini

VTh :

ventral thalamus

II :

optic nerve

References

  • Arluison M, Dietl M, Thibault J (1984) Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry: a topographical study. Brain Res Bull 13:269–285

    Google Scholar 

  • Corio M, Doerr-Schott J (1988) The monoaminergic system in the diencephalon of the newt tadpole, Triturus alpestris. A histofluorescence study. J Hirnforsch 29:377–384

    Google Scholar 

  • Corio M, Thibault J, Peute J (1990) Topographical relationships between catecholamine-and neuropeptide-contaning fibers in the median eminence of the newt, Triturus alpestris. An ultrastructural immunocytochemical study. Cell Tissue Res 259:561–566

    Google Scholar 

  • Corio M, Peute J, Steinbusch HWM (1991) Distribution of serotonin-and dopamine-immunoreactivity in the brain of the teleost Clarias gariepinus. J Chem Neuroanat 4:79–95

    Google Scholar 

  • Danger J-M, Perroteau I, Franzoni MF, Saint-Pierre S, Fasolo A, Vaudry H (1989) Innvervation of the pars intermedia and control of alpha-melanotropin secretion in the newt. Neuroendocrinology 50:543–549

    Google Scholar 

  • Diederen JHB, Vullings HGB, Terlou M (1985) Catecholaminergic and serotonergic brain structures in European green frogs: an autoradiographical study. Basic Appl Histochem 29:297–308

    Google Scholar 

  • Duback M, Schmidt R, Kunkel D, Bowden DM, Martin R, German CC (1987) Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci Lett 75:205–210

    Google Scholar 

  • Dubé L, Parent A (1982) The organization of monoamine-containing neurons in the brain of the salamander, Necturus maculosus. J Comp Neurol 211:21–30

    Google Scholar 

  • Ekström P, Honkanen T, Steinbusch HWM (1990) Distribution of dopamine-immunoreactive neuronal perikarya and fibres in the brain of a teleost, Gasterossteus aculeatus L. Comparison with tyrosine hydroxylase-and dopamine-β-hydroxylase-immunoreactive neurons. J Chem Neuroanat 3:233–260

    Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    Google Scholar 

  • Fasolo A, Franzoni MF, Goudina G, Steinbusch HWM (1986) The organization of serotonin-immunoreactive neuronal systems in the brain of the crested newt, Triturus cristatus carnifex Laur. Cell Tissue Res 243:239–247

    Google Scholar 

  • Finkenstädt TH, Ebbesson SOE, Ewert JP (1983) Projections of the midbrain tectum in Salamandra salamandra L. Cell Tissue Res 234:39–55

    Google Scholar 

  • Franzoni MJ, Thibault J, Fasolo A, Martinolis MG, Scaranari F, Calas A (1986) Organization of tyrosine-hydroxylase immunopositive neurons in the brain of the crested newt, Triturus cristatus carnifex. J Comp Neurol 251:121–134

    Google Scholar 

  • Gaspar P, Berger B, Alvarez C, Vigny A, Henry JP (1985) Catecholaminergic innervation of the septal area in man: immunocytochemical study using TH and DBH antibodies. J Comp Neurol 241:12–33

    Google Scholar 

  • Gonzalez A, Smeets WJAJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303:457–477

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander, Ambystoma tigrinum. University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M (1973) Immunohistochemical studies on monoamine-containing cell systems. Brain Res 62:461–469

    Google Scholar 

  • Hornby PJ, Piekut DT, Demski CS (1987) Localization of immunoreactive tyrosine hydroxylase in the goldfish brain. J Comp Neurol 261:1–14

    Google Scholar 

  • Kiss JZ, Peczely P (1987) Distribution of tyrosine hydroxylase (TH)-immunoreactive neurons in the diencephalon of the pigeon (Columba livia domestica) J Comp Neurol 257:333–346

    Google Scholar 

  • Kosaka T, Hama K, Nagatsu I (1987) Tyrosine hydroxylase-immunoreactive intrinsic neurons in the rat cerebral cortex. Exp Brain Res 68:393–405

    Google Scholar 

  • Lamas J, Rodicio C, Caruncho H, Anadon R (1988) Monoaminergic systems of the hypothalamus of ten amphibian species: a histofluorescence study. J Hirnforsch 29:289–297

    Google Scholar 

  • Meek J, Joosten HWJ, Steinbusch HWM (1989) The distribution of dopamine-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:362–383

    Google Scholar 

  • Meister B, Hökfelt T, Steinbusch HWM, Skagersberg G, Lindwall O, Geffard M, Joh TH, Cuello AC, Goldstein M (1988) Do tyrosine hydroxylase-immunoreactive neurons in the ventro-lateral arcuate nucleus produced dopamine or only L-DOPA? J Chem Neuroanat 1:59–64

    Google Scholar 

  • Meredith GE, Smeets WJAJ (1987) Immunocytochemical analysis of the dopamine systems in the forebrain and midbrain of Raja radiata: evidence for a substantia nigra and ventral tegmental area in cartilaginous fish. J Comp Neurol 265:530–548

    Google Scholar 

  • Mons N, Tison F, Geffard M (1990) Existence of L-DOPA immunoreactive neurons in the rat preoptic area and anterior hypothalamus. Neuroendocrinology 51:425–428

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1986) Internuclear connections between the pretectum and the accessory optic system in Salamandra salamandra. Cell Tissue Res 243:595–602

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1988) Origins of descending projections to the medulla oblongata and rostal medulla spinalis in the urodele Salamandra salamandra (Amphibia). J Comp Neurol 273:187–206

    Google Scholar 

  • Okamura H, Kitahama K, Nagatsu I, Geffard M (1988a) Comparative topography of dopamine-and tyrosine hydroxylase-immunoreactive neurons in the rat arcuate nucleus. Neurosci Lett 95:347–353

    Google Scholar 

  • Okamura H, Kitahama K, Mons N, Ibata Y, Jouvet M, Geffard M (1988b) L-DOPA-immunoreactive neurons in the rat hypothalamic tuberal region. Neurosci Lett 95:42–46

    Google Scholar 

  • Peute J (1969) Fine structure of the paraventricular organ of Xenopus laevis tadpoles. Z Zellforsch 97:564–575

    Google Scholar 

  • Peute J (1973) Ultrastructural aspects of the nucleus infundibularis dorsalis in the caudal hypothalamus of Xenopus laevis. Z Zellforsch 137:513–520

    Google Scholar 

  • Peute J, Oordt PGWJ van (1974) Ultrastructural and functional aspects of Gomori-negative neurosecretory cells in the caudal hypothalamus of Amphibia. Fortschr Zool 22:134–154

    Google Scholar 

  • Prasada Rao PD (1982) Changes in formaldehyde induced fluorescence of the hypothalamus and pars intermedia in the frog, Rana temporaria, following background adaptation. Brain Res Bull 9:765–776

    Google Scholar 

  • Prasada Rao PD, Hartwig RG (1974) Monoaminergic tracts of the diencephalon and innervation of the pars intermedia in Rana temporaria. A fluorescence and microspectrofluorimetric study. Cell Tissue Res 151:1–26

    Google Scholar 

  • Reiner A, Northcutt RG (1987) An immunohistochemical study of the telencephalon of the African lungfish, Protopterus annectens. J Comp Neurol 256:463–481

    Google Scholar 

  • Roberts BL, Meredith GE, Maslam S (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat Embryol 180:401–412

    Google Scholar 

  • Smeets WJAJ, Steinbusch HWM (1988) Distribution of serotonin immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J Comp Neurol 271:419–434

    Google Scholar 

  • Smeets WJAJ, Steinbusch HWM (1990) New insights into the reptilian catecholaminergic system as revealed by antibodies against the neurotransmitters and their synthetic enzymes. J Chem Neuroanat 3:25–43

    Google Scholar 

  • Smeets WJAJ, Hoogland PV, Voorn P (1986) The distribution of dopamine immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. An immunohistochemical study with antibodies against dopamine. J Comp Neurol 253:46–60

    Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Google Scholar 

  • Székely G, Lazar G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434

    Google Scholar 

  • Terlou M, Straaten HWM van (1973) The development of a hypothalamic monoaminergic system for the regulation of the pars intermedia activity in Xenopus laevis. Z Zellforsch 143:229–238

    Google Scholar 

  • Tillet Y, Ravault J-P, Seleve C, Evin G, Castro B, Dubois MP (1986) Conditions d'utilisation d'anticorps specifiques pour la visualisation immunocytochimique de la sérotonine et de la mélatonine dans la glande pinéale du mouton. CR Acad Sci (III) 303:77–82

    Google Scholar 

  • Tonon MC, Danger JM, Lamacz M, Leroux P, Adjeroud S, Andersen AC, Verburg-van Kemenade BML, Jenks BG, Pelletier G, Stoeckel ME, Burlet A, Kupryszewski G, Vaudry H (1988) Multihormonal control of melanotropin secretion in cold-blooded vertebrates. In: Haldley ME (ed) The melanotropic peptides. CRC Press, New York, pp 127–171

    Google Scholar 

  • Ueda S, Nojyo Y, Sano Y (1984) Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog, Rana catesbeiana. Anat Embryol 169:219–229

    Google Scholar 

  • Vesselkim N, Ermakova TT, Kenigfest NB, Goikovic M (1980) The striatal connections in frog Rana temporaria: an HRP study. J Hirnforsch 21:381–392

    Google Scholar 

  • Wolters JG, Ten Donkelaar HJ, Verhofstad AAJ (1984) Distribution of catecholamine in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Neuroscience 13:469–493

    Google Scholar 

  • Yoshida M, Nagatsu I, Kondo Y, Karasawa M, Ohno T, Spatz M, Nagatsu T (1983) Immunohistochemical localization of the neurons containing catecholamine synthesizing enzymes and serotonin in the brain of bullfrog Rana catesbeiana. Acta Histochem Cytochem 16:245–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corio, M., Thibault, J. & Peute, J. Distribution of catecholaminergic and serotoninergic systems in forebrain and midbrain of the newt, Triturus alpestris (Urodela). Cell Tissue Res 268, 377–387 (1992). https://doi.org/10.1007/BF00318806

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318806

Key words

Navigation