Skip to main content
Log in

Physical and biochemical characterization of the cloned LYS5 gene required for α-aminoadipate reductase activity in the lysine biosynthetic pathway of Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The LYS5 and LYS2 genes of Saccharomyces cerevisiae are required for the synthesis of α-aminoadipate reductase in the lysine pathway. The LYS5 gene, originally cloned as a DNA insert of the plasmid pSC5, has been subcloned on a 3.2 kb SphI-Sau3AI DNA fragment of the recombinant plasmid pSR7. An internal 2.1 kb HpaI-HpaI DNA fragment of the subclone, upon Southern hybridization, exhibits homology with HpaI-restricted wild-type S. cerevisiae genomic DNA. The lys5 + transformants exhibited α-aminoadipate reductase activity similar to that of wild-type cells. S1 nuclease analysis localizes the transcription initiation site relative to the detailed restriction map, and reveals the direction of transcription, as well as the transcript size of the LYS5 gene which can be no greater than 1.65 kb. From this it is estimated that the encoded polypeptide is appreciably smaller than the 4 kb LYS2 gene product. These results provide a physical and biochemical characterization of the cloned LYS5 gene. Based on these observations, it is concluded that the LYS5 gene encodes a relatively small polypeptide of the large heteropolymeric α-aminoadipate reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes DA, Thorner J (1986) Mol Cell Biol 6:2828–2838

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Bhattacharjee JK (1985) CRC Crit Rev Microbiol 12:131–151

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1525

    Google Scholar 

  • Biswas GD, Bhattacharjee JK (1974) Antonie Van Leeuwenhoek J Microbiol Serol 40:221–231

    Google Scholar 

  • Borell CW, Bhattacharjee JK (1988) Curr Genet 13:299–304

    Google Scholar 

  • Broquist HP (1971) Methods Enzymol 17B:112–129

    Google Scholar 

  • Chattoo B, Sherman F, Azubalis D, Fjellstedt T, Mehnert D, Ogur M (1979) Genetics 93:51–65

    Google Scholar 

  • Eibel H, Philippsen P (1983) Mol Gen Genet 191:66–73

    Google Scholar 

  • Fjellstedt T, Ogur M (1970) J Bacteriol 101:108–117

    Google Scholar 

  • Fleig UN, Pridmore RD, Philippsen P (1986) Gene 46:237–245

    Google Scholar 

  • Haynes JR, Rosteck P, Schon EA, Gallagher PM, Burks DJ, Smith K, Lingrel JB (1980) J Biol chem 255:6355–6367

    Google Scholar 

  • Heslot HC, Gaillardin M, Beckerich JM, Fournier P (1979) In: Sebek OK, Laskin AI (eds) Genetics of industrial microorganisms, Am Soc Microbiol, Washington D.C., pp 54–60

    Google Scholar 

  • Hwang YL, Lindegren G, Lindegren CC (1966) Can J Genet Cytol 8:471–480

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1984) J Bacteriol 153:163–168

    Google Scholar 

  • Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D (1987) Curr Genet 11:385–391

    Google Scholar 

  • Li W, Okamoto S, Bhattacharjee JK (1989) Curr Genet 16:7–12

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • Mandel M, Higa A (1970) J Mol Biol 53:159–162

    Google Scholar 

  • McDonnell MW, Simon MN, Studier FW (1977) J Mol Biol 110:119–146

    Google Scholar 

  • Miller KG, Sollner-Webb B (1981) Cell 27:165–174

    Google Scholar 

  • Morris ME, Jinks-Robertson (1991) Gene 98:141–145

    Google Scholar 

  • Norgard MV, Emigholz K, Monahan JJ (1979) J Bacteriol 138:270–272

    Google Scholar 

  • Rigby PWJ, Diekman M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Robbins J, Rosteck P, Haynes JR, Freyer G, Cleary ML, Kelter HD, Smith K, Lingrel JB (1979) J Biol Chem 254:6187–6195

    Google Scholar 

  • Sagisaka S, Shimura K (1960) Nature 184:1709–1710

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sinha AK, Bhattacharjee JK (1970) Biochem Biophys Res Commun 39:1205–1210

    Google Scholar 

  • Sinha AK, Bhattacharjee JK (1971) Biochem J 125:743–749

    Google Scholar 

  • Smith HO, Birnstiel ML (1976) Nucleic Acids Res 3:2387–2398

    Google Scholar 

  • Storts DR, Bhattacharjee JK (1989) Biochem Biophys Res Commun 161:182–186

    Google Scholar 

  • Ye ZH, Bhattacharjee JK (1988) J Bacteriol 170:5968–5970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajnarayan, S., Vaughn, J.C. & Bhattacharjee, J.K. Physical and biochemical characterization of the cloned LYS5 gene required for α-aminoadipate reductase activity in the lysine biosynthetic pathway of Saccharomyces cerevisiae . Curr Genet 21, 13–16 (1992). https://doi.org/10.1007/BF00318647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318647

Key words

Navigation