Skip to main content
Log in

The soil fauna of a beech forest on limestone: trophic structure and energy budget

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The soil fauna of a mull beech forest on lime-stone in southern Lower Saxony (West Germany) was sampled quantitatively. Biomass estimates, trophic characteristics, and measurement and calculation of the energetic parameters of the constituent animal populations were used to construct an energy budget of the total heterotrophic subsystem of the forest. Mean annual zoomass amounted to about 15 g d wt m−2; earthworms (about 10 g d wt m−2) and other groups of the macrofauna were dominant. Protozoa constituted about 1.5 g d wt m−2. Relative distribution of zoomass among the trophic categories was 50% macrosaprophages, 30% microsaprophages, 12% microphytophages, and 4% zoophages. Total annual consumption rate of the saprophagous and microphytophagous soil fauna (6328 and 4096 kJ m−2 yr−1, respectively) was of the same order of magnitude as annual litter fall (canopy leaves 6124 kJ m−2 yr−1, flowers and fruits 944 kJ m−2 yr−1, herbs 1839 kJ m−2 yr−1, fine woody material 870 kJ m−2 yr−1, tree roots 3404 kJ m−2 yr−1, without coarse woody litter). Primary decomposers (macrosaprophages) were the key group for litter comminution and translocation onto and into the soil, thus contributing to the high decomposition rate (k=0.8) for leaf litter. Consumption rates of the other trophic groups were (values as kJ m−2 yr−1): bacteriophages 2954, micromycophages 416, zoophages 153. Grazing pressure of macrophytophages (including rhizophages) was low. Faeces input from the canopy layer was not significant. Grazing pressure on soil microflora almost equalled microbial biomass; hence, a large fraction of microbial production is channelled into the animal component. Predator pressure on soil animals is high, as a comparison between consumption rates by zoophages and production by potential prey — mainly microsaprophages, microphytophages and zoophages — demonstrated. Soil animals contributed only about 11% to heterotrophic respiration. However, there is evidence that animals are important driving variables for matter and energy transfer: key processes are the transformation of dead organic material and grazing on the microflora. It is hypothesized that the soil macrosaprophages are donor-limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M (1977) An introduction to soil microbiology. 2nd ed. Wiley, New York, Santa Barbara

    Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials, Blackwell, Oxford London

    Google Scholar 

  • Anderson JM (1987) Interactions between invertebrates and microorganisms: noise or necessity for soil processes? In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Cambridge University Press, Cambridge, pp 125–145

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 17: 197–203

    Google Scholar 

  • Andres E (1984) Kohlenstoff-Umsatz und-Bilanz des Bodens eines Buchenwald-Ökosystems auf Kalkgestein. Gött bodenkundl Ber 80: 1–174

    Google Scholar 

  • Axelsson B, Lohm U, Persson P (1984) Enchytraeids, lumbricids and soil arthropods in a northern deciduous woodland — a quantitative study. Holarct Ecol 7: 91–103

    Google Scholar 

  • Büttner V (1988) Untersuchungen zur Ökologie der Nematoden eines Kalkbuchenwaldes. Thesis, Göttingen

  • Corsmann M (1981) Untersuchungen zur Ökologie der Schnecken (Gastropoda) cines Kalkbuchenwaldes: Populationsdichte, Phänologie und kleinräumige Verteilung. Drosera 81: 75–92

    Google Scholar 

  • Crawley MJ (1983) Herbivory: the dynamics of animal-plant interactions. Blackwell, Oxford London

    Google Scholar 

  • DeAngelis DL, Gardner RH, Shugart HH (1981) Productivity of forest ecosystems studied during IBP: the woodland data set. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 567–672

    Google Scholar 

  • Dierschke H (1989) Kleinräumige Vegetationsstruktur und phänologischer Rhythmus eines Kalkbuchenwaldes. Verh Ges Ökol 17 (in press)

  • Dierschke H, Song Y (1982) Vegetationsgliederung und kleinräumige Horizontalstruktur eines submontanen Kalkbuchenwaldes. In: Dierschke H (ed) Struktur und Dynamik von Wäldern. Berichte der internationalen Symposien der Internationalen Vereinigung für Vegetationskunde, Rinteln 1981. Cramer, Vaduz, pp 513–539

    Google Scholar 

  • Edwards NT, Shugart HH, McLaughlin SB, Harris WF, Reichle DE (1981) Carbon metabolism in terrestrial ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 499–536

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung. Ergebnisse des Sollingprojekts 1966–1986. Ulmer, Stuttgart

    Google Scholar 

  • Foissner W (1987) Soil Protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to literature. Progr Protist 2: 69–212

    Google Scholar 

  • Funke W (1971) Food and energy turnover of leaf-eating insects and their influence on primary production. Ecol Studies 2: 81–93

    Google Scholar 

  • Grimm R, Funke W (1986) Energieflüsse durch die Populationen der Tiere. In: Ellenberg H, Mayer R, Schauermann J (eds) Ökosystemforschung. Ergebnisse des Sollingprojekts 1966–1986, Ulmer, Stuttgart, pp 337–355

    Google Scholar 

  • Heal OW, MacLean SF (1975) Comparative productivity in ecosystems — secondary productivity. In: van Dobben WH, Lowe-McConnell RH (eds) Unifying concepts in ecology. Junk, Pudoc, The Hague, Wageningen, pp 89–108

    Google Scholar 

  • Hövemeyer K (1984) Die Dipterengemeinschaft eines Buchenwaldes auf Kalkgestein: Produktion and Imagines. Abundanz und räumliche Verteilung insbesondere der Larven. Pedobiologia 26: 1–15

    Google Scholar 

  • Hövemeyer K (1985) Die Zweiflügler eines Kalkbuchenwaldes: Lebenszyklen, Raum-Zeit-Muster und Nahrungsbiologie. Thesis, Göttingen

  • Humphreys WF (1979) Production and respiration in animal populations. J Anim Ecol 48: 427–453

    Google Scholar 

  • Jörgensen RG (1987) Flüsse, Umsatz und Haushalt der postmortalen organischen Substanz und ihrer Stoffgruppen in Streudecke und Bodenkörper eines Buchenwald-Ökosystems auf Kalkgestein. Gött bodenkundl Bér 91: 1–409

    Google Scholar 

  • Judas M (1989a) Populationsökologie der Regenwürmer (Lumbricidae) in einem Kalkbuchenwald: Abundanzdynamik und Bedeutung von Nahrungsressourcen. Thesis, Göttingen

  • Judas M (1989b) Predator-pressure on earthworms in a beechwood: field experiments and a review of potential impact. Pedobiologia 33: 339–354

    Google Scholar 

  • Judas M, Poser K, Joger HG, Schaefer M (1989) Langfristige Populationsdynamik der Regenwürmer (Lumbricidae) eines Kalkbuchenwaldes. Verh Ges Ökol (in press)

  • Kjoller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39: 389–422

    Google Scholar 

  • Larcher W (1984) Ökologie der Pflanzen. 4th ed. Ulmer, Stuttgart

    Google Scholar 

  • Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia 12: 434–463

    Google Scholar 

  • Luxton M (1979) Food and energy processing by oribatid mites. Rev Ecol Biol Sol 16: 103–111

    Google Scholar 

  • Martius C (1986) Die Laufkäferfauna (Coleoptera: Carabidae) eines Kalkbuchenwaldes. Drosera '86: 1–11

    Google Scholar 

  • McBrayer JF (1977) Contributions of cryptozoa to forest nutrient cycles. In: Mattson WJ (ed) The role of arthropods in forest ecosystems. Springer, New York Heidelberg, pp 70–77

    Google Scholar 

  • McNeill S, Lawton JH (1970) Annual production and respiration in animal populations. Nature 225: 472–474

    Google Scholar 

  • Meistefeld R (1989) Die Bedeutung der Protozoen im Kohlenstoffhaushalt eines Kalkbuchenwaldes. Verh Ges Ökol 17 (in press)

  • Meiwes KJ, Beese F (1988) Ergebnisse der Untersuchung des Stoffhaushaltes eines Buchenwaldökosystems auf Kalkgestein. Ber Forschungszentrum Waldökosysteme B 9: 1–141

    Google Scholar 

  • Mellin A (1988) Untersuchungen zur Autökologie und Funktion von Enchytraeiden, Tubificiden und Aeolosomatiden (Annelida, Oligochaeta) im Ökosystem Kalkbuchenwald. Thesis, Göttingen

  • Odum EP (1971) Fundamentals of ecology. 3rd ed. Saunders, Philadelphia

    Google Scholar 

  • O'Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • O'Neill RV, Reichle DE (1979) Dimensions of ecosystem theory. In: Waring RH (ed) Forests: Fresh perspectives from ecosystem analysis. Oregon State University Press, Corvallis, pp 11–25

    Google Scholar 

  • Pellinen P (1986) Biomasseuntersuchung im Kalkbuchenwald. Thesis, Göttingen

  • Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström BE, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. In: Persson T (ed) Structure and function of northern coniferous forests. Ecological Bulletins 32, Stockholm, pp 419–459

  • Persson T, Lohm U (1977) Energetical significance of the annelids and arthropods in a Swedish grassland soil. Ecological Bulletins 23, Stockholm

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39: 287–388

    Google Scholar 

  • Petrusewicz K, MacFadyen A (1970) Productivity of terrestrial animals. Principles and methods. IBP Handbook 13, Blackwell, Oxford Edinburgh

    Google Scholar 

  • Poser T (1988) Chilopoden als Prädatoren in einem Laubwald. Pedobiologia 31: 261–281

    Google Scholar 

  • Reichle DE (1977) The role of soil invertebrates in nutrient cycling. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Ecological Bulletins 25. NFR, Stockholm, pp 145–156

    Google Scholar 

  • Sayer M (1989) Zur Nahrungsbiologie der Kleinsäuger im Kalkbuchenwald. Verh Ges Ökol 17 (in press)

  • Schaefer M (1983) Kurzflügler (Coleoptera: Staphylinidae) als Teil des Ökosystems “Kalkbuchenwald”. Verh Ges Ökol 11: 361–372

    Google Scholar 

  • Schaefer M (1989a) Die Bodentiere eines Kalkbuchenwaldes: ein Ökosystemforschungsprojekt. Verh Ges Ökol 17 (in press)

  • Schaefer M (1989b) The animal community: diversity and resources. In: Röhrig E, Ulrich B (eds) Temperature deciduous forests (Ecosystems of the world). Elsevier, Amsterdam (in press)

    Google Scholar 

  • Schaefer M (1989c) Animals in European temperate deciduous forests. In: Röhrig E, Ulrich B (eds) Temperate deciduous forests (Ecosystems of the world) Elsevier, Amsterdam (in press)

    Google Scholar 

  • Schaefer M (1989d) Ecosystem processes: secondary production and decomposition. In: Röhrig E, Ulrich B (eds) Temperature deciduous forests (Ecosystems of the world). Elsevier, Amsterdam (in press)

    Google Scholar 

  • Schaefer M, Schauermann J (1989) The soil fauna of beech forests: comparison between a mull and a moder soil. Manuscript submitted

  • Scheu S (1987a) The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia 72: 197–201

    Google Scholar 

  • Scheu S (1987b) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Oecologia 72: 230–234

    Google Scholar 

  • Schmidt W, Eggert A, Hartmann T, Kothe G, Schultz R (1989) Jahresrhythmus und Produktion der Krautschicht in einem Kalkbuchenwald. Verh Ges Ökol 17 (in press)

  • Slansky F, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York Chichester

    Google Scholar 

  • Sprengel T (1986) Die Doppelfüßer (Diplopoda) eines Kalkbuchenwaldes und ihre Funktion beim Abbau der Laubstreu. Thesis, Göttingen

  • Stippich G (1986) Die Spinnenfauna (Arachnida: Araneida) eines Kalkbuchenwaldes: Bedeutung von Habitatstruktur und Nahrung. Thesis Göttingen

  • Strüve-Krusenberg R (1987) Die Asseln eines Kalkbuchenwaldes: Populationsökologie und Nahrungsbiologie. Thesis, Göttingen

  • Strüve-Kusenberg R (1989) Zur Nahrungsbiologie der Asseln (Isopoda) eines Kalkbuchenwaldes. Verh Ges Ökol 17 (in press)

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in Biology 5. Blackwell, Oxford London

    Google Scholar 

  • Ulrich W (1987) Wirtsbeziehungen der parasitoiden Hautflügler in einem Kalkbuchenwald (Hymenoptera). Zool Jahrb Abt Syst Oekol Geogr Tiere 114: 303–342

    Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15: 303–377

    Google Scholar 

  • Wagner B, Schaefer M (1989) Rüsselkäfer und Blattkäfer (Coleoptera: Curculionidae, Chrysomelidae) als Phytophage in einem Kalkbuchenwald Verh Ges Ökol (in press)

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, London New York San Francisco

    Google Scholar 

  • Wiegert RG, Petersen CE (1983) Energy transfer in insects. Annu Rev Entomol 28: 455–486

    Google Scholar 

  • Wieser W (1986) Bioenergetik. Energietransformationen bei Organismen. Thieme, Stuttgart New York

    Google Scholar 

  • Winter K (1985) Über die Rolle phytophager Insekten in Buchenwäldern. Forst- Holzwirt 40: 93–99

    Google Scholar 

  • Wolters V (1983) Ökologische Untersuchungen an Collembolen eines Buchenwaldes auf Kalk. Pedobiologia 25: 73–85

    Google Scholar 

  • Wolters V (1985) Untersuchungen zur Habitatbindung und Nahrungsbiologie der Springschwänze (Collembola) eines Laubwaldes unter besonderer Berücksichtigung ihrer Funktion in der Zersetzerkette. Thesis, Göttingen

  • Wolters V (1988) Effects of Mesenchytraeus glandulosus (Oligochaeta, Enchytraeidae) on decomposition processes. Pedobiologia 32: 387–398

    Google Scholar 

  • Wolters V (1989) The influence of omnivorous elaterid larvae on the microbial carbon cycle in different forest soils. Oecologia 80: 405–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, M. The soil fauna of a beech forest on limestone: trophic structure and energy budget. Oecologia 82, 128–136 (1990). https://doi.org/10.1007/BF00318544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318544

Key words

Navigation