Skip to main content
Log in

Niche segregation in high-altitude Himalayan chats (Aves, Turdidae): does morphology match ecology?

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We investigated patterns of habitat segregation and morphological differentiation in syntopic, closely related turdid birds of the alpine zone of the Central Himalayas. Discriminant function analysis of 19 habitat structure parameters and comparisons of additional habitat features revealed that the species were distributed along gradients of vegetation height and vegetation density. In addition, non-vegetational structural habitat features, like microrelief variability or the presence of rocks and boulders, had strong discriminating power. In terms of habitat preferences the species of the guild investigated formed three subsets: shrubbery species (Erithacus pectoralis, E. chrysaeus and Hodgsonius phoenicuroides), species preferring open areas with higher surface roughness (Phoenicurus frontalis, Chaimarrornis leucocephalus) and the high-altitude species Grandala coelicolor. Using discriminant function analysis of 20 characters, morphology was analysed in relation to microhabitat utilization and foraging behaviour. Species inhabiting patches of shrubby thickets and foraging mainly by pedal movements (E. pectoralis, E. chrysaeus and H. phoenicuroides) have in common short rounded wings with high wing loading and strong legs and feet. Species preferably foraging by aerial hawking or “perch and pounce” techniques in more open areas (P. frontalis, C. chaimarrornis, and to some extent E. cyanurus) have longer wings, shorter tarsi and long rictal bristles. Grandala proved to be well adpated for long-distance flights at high altitudes (long, pointed wings) and for pedal foraging. Overall our results fit the basic assumption of ecomorphological theory that morphological distance reflects ecological distance. The ordination of each species in morphological space closely matched its distribution in ecological space (microhabitat, foraging strategies). Striking associations of morphology with ecology were not only evident for single traits but were also found in multidimensional comparisons: between-species Euclidian distances in ecology calculated from 19 habitat properties were in most cases equivalent to morphological distances calculated from 20 traits. In addition, in one of the two study areas species locations in the plane spanned by DFA axes of habitat use mirrored their positions in the morphological multivariate space. The observed distributions of the species in ecological and morphological space are interpreted as being mainly attributable to individualistic responses to the specific constraints of the alpine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S, Ripley SD (1987) Compact handbook of the birds of India and Pakistan, 2nd edn. Oxford University Press, Delhi Oxford New York

    Google Scholar 

  • Brown VK, Gange AC, Gibson CWD (1988) Insect herbivory and vegetational structure. In: Werger MJA, van der Aart PJM, During HJ, Verboeven JTA (eds). Plant form and vegetation structure, SPB Academic, The Hague, pp 263–279

    Google Scholar 

  • Cody ML (1968) On the methods of resource division in grassland bird communities. Am Nat 102: 107–147

    Google Scholar 

  • Cody ML (1978) Habitat selection and interspecific territoriality among the sylviid warblers of England and Sweden. Ecol Monogr 48: 351–395

    Google Scholar 

  • Cody ML (1985) Habitat selection in grassland and open country birds. In: Cody ML (ed) Habitat selection in birds. Academic Press, Orlando London, pp 191–226

    Google Scholar 

  • Colwell RK (1984) What's new? Community ecology discovers biology. In: Price PW, Slobodchikoff CN, Gaud WS (eds) A new ecology: novel approaches to interactive systems. Wiley, New York, 387–396

    Google Scholar 

  • Collins SL, James FC, Risser PG (1982) Habitat relationships of wood warblers (Parulidae) in northern central Minnesota. Oikos 39: 50–58

    Google Scholar 

  • Conder P (1989) The wheatear. Christopher Helm, London

    Google Scholar 

  • Cornwallis L (1975) The comparative ecology of eleven species of wheatear (genus Oenanthe) in S.W. Iran. D Phil Thesis, Oxford University

  • Diesselhorst G (1968) Beiträge zur Ökologie der Vögel Zentral- und Ostnepals. In: Helmich W, (ed) Khumbu Himal: Ergebnisse des Forschungsunternehmens Nepal Himalaya 2. Universitätsverlag Wagner, Innsbruck, pp 5–417

    Google Scholar 

  • Douglas ME, Mathews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65: 213–224

    Google Scholar 

  • Dunson WA, Travis J (1991) The role of abiotic factors in community organization. Am Nat 138: 1067–1091

    Google Scholar 

  • Eckhardt RC (1979) The adaptive syndroms of two guilds of insectivorous birds in the Colorado rocky mountains. Ecol Monogr 49: 129–149

    Google Scholar 

  • Findley JS, Black H (1983) Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology 64: 625–630

    Google Scholar 

  • Gatz AJ (1979) Community organization in fishes as indicated by morphological features. Ecology 60: 711–718

    Google Scholar 

  • Gavrilov EI, Kovshar AF (1970) Breeding biology of the Himalayan Rubythroat, Erithacus pectoralis (Gould) in the Tien Shan. J Bombay Nat Hist Soc 67: 14–25

    Google Scholar 

  • Gee JHR, Giller PS (eds) (1987) Organization of communities: past and present, Blackwell Scientific, Oxford

    Google Scholar 

  • Giller PS (1984) Community structure and the niche, Chapman and Hall, London

    Google Scholar 

  • Harder LD (1985) Morphology as a predictor of flower choice of bumble bees. Ecology 66: 198–210

    Google Scholar 

  • Inskipp JR, Inskipp T (1985) A guide to the birds of Nepal. Croom Helm, London Sidney

    Google Scholar 

  • Kipp FA (1976) Das Leben in Flugschwärmen und seine Auswirkungen auf den Flügelbau. Vogelwarte 28: 171–180

    Google Scholar 

  • Lack D (1940) Habitat selection and speciation in birds. Br Birds 34: 80–84

    Google Scholar 

  • Lack D (1944) Ecological aspects of species-formation in passerine birds. Ibis 86: 260–286

    Google Scholar 

  • Landmann A, Grüll A, Sackl P, Ranner A (1990) Bedeutung und Einsatz von Bestandserfassungen in der Feldornithologie: Ziele, Chancen, Probleme und Stand der Anwendung in Österreich. Egretta 33: 11–50

    Google Scholar 

  • Lederer RJ (1972) The role of avian rictal bristles. Wilson Bull 84: 193–197

    Google Scholar 

  • Lederer RJ (1975) Bill size, food size and jaw forces of insectivorous birds. Auk 92: 385–387

    Google Scholar 

  • Lederer RJ (1984) A view of avian ecomorphological hypotheses. Ökol Vögel 6: 119–126

    Google Scholar 

  • Leisler B (1990) Selection and use of habitat of wintering migrants. In: Gwinner E (ed): Bird migration. Springer, Berlin Heidelberg, pp 156–174

    Google Scholar 

  • Leisler B, Winkler H (1985) Ecomorphology. Current Ornithol 2: 155–186

    Google Scholar 

  • Leisler B, Winkler H (1991) Ergebnisse und Konzepte ökomorphologischer Untersuchungen an Vögeln. J Ornithol 132: 373–425

    Google Scholar 

  • Leisler B, Heine G, Siebenrock KH (1983) Einnischung und intraspezifische Territorialität überwintern der Steinschmätzer (Oenanthe isabellina, O. oenanthe, O. pleschanka) in Kenia: J Ornithol 124: 393–413

    Google Scholar 

  • Leisler B, Ley HW, Winkler H (1989) Habitat, behaviour and morphology of Acrocephalus warblers: an integrated analysis. Ornis Scand 20: 181–186

    Google Scholar 

  • Miehe G (1982) Vegetationsgeographische Untersuchungen im Dhaulagiri- und Annapurna-Himalaya (Dissertationes Botanicae 66/1, 2) J. Cramer, Vaduz

    Google Scholar 

  • Miehe G (1990) Langtang-Himal: Flora und Vegetation als Klimazeiger und-zeugen im Himalaya. (Dissertationes Botanicae 158). J. Cramer, Stuttgart

    Google Scholar 

  • Miles DB, Rickleffs RE (1984) The correlation between ecology and morphology in decidous forest passerine birds. Ecology 65: 1629–1640

    Google Scholar 

  • Miles DB, Ricklefs RE, Travis J (1987) Concordance of ecomorphological relationships in three assemblages of passerine birds. Am Nat 129: 347–364

    Google Scholar 

  • Moreno J (1984) Search strategies of wheatears (Oenanthe oenanthe) and stonechats (Saxicola torquata): adaptive radiation in perch, height, search time, sally distance and inter-perch move length. J Anim Ecol 53: 147–159

    Google Scholar 

  • Nakamura T (1980) Ecological separation and adaptive space of warbler guild inhabiting the coniferous forest in Shiga Heights. Bull Inst Nat Educ Shiga Heights 19: 45–59

    Google Scholar 

  • Norberg UM (1981) Flight, morphology and the ecological niche in some birds and bats. Symp Zool Soc London 48: 173–197

    Google Scholar 

  • Pennycuick CJ (1975) Mechanics of flight. In: King JR, Farner DS (eds) Avian biology 5. Academic, London New York, pp 1–75

    Google Scholar 

  • Pianka ER (1988) Evolutionary ecology, 4th edn. Harper & Row, New York

    Google Scholar 

  • Potapova EG, Panov EN (1977) Structural patterns of jaw apparatus in wheatears of the genus Oenanthe, with special reference to the ways of decrease of food competition between closely related species (in Russian). Zool Zh 56: 743–752

    Google Scholar 

  • Price T (1991) Morphology and ecology of breeding warblers along an altitudinal gradient in Kashmir, India. J Anim Ecol 60: 643–664

    Google Scholar 

  • Richman AD, Price T (1992) Evolution of ecological differences in the Old World leaf warblers. Nature 355: 817–821

    Google Scholar 

  • Rosenzweig ML (1987) Community organization from the point of view of habitat selectors. In: Gee JHR, Giller PS (eds) Organization of communities: past and present. Blackwell Scientific, Oxford, pp 469–490

    Google Scholar 

  • Rosenzweig MJ (1991) Habitat selection and population interactions: the search for mechanism. Am Nat 137 Suppl: 5–28

    Google Scholar 

  • Rotenberry JT, Wiens JA (1980) Habitat structure, patchiness and avian communities in North American steppe vegetation: a multivariate analysis. Ecology 61: 1228–1250

    Google Scholar 

  • Rüggeberg T (1960) Zur funktionellen Anatomic der hinteren Extremität einiger mitteleuropäischer Singvogelarten. Z Wiss Zool 164: 1–118

    Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185: 27–39

    Google Scholar 

  • Schoener TW (1986) Overview: kinds of ecological communities —ecology becomes pluralistic. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 467–479

    Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. Yale University Press, London

    Google Scholar 

  • Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Syst 22: 115–143

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco

    Google Scholar 

  • Stettenheim P (1974) The bristles of birds. Living Bird 12: 201–234

    Google Scholar 

  • Wiens JA (1969) An approach to the study of the ecological relationships among grassland birds. Ornithological Monographs 8. Allan Press, Lawrence

    Google Scholar 

  • Wiens JA (1973) Patterns and process in grassland bird communities. Ecol Monogr 43: 237–270

    Google Scholar 

  • Wiens JA (1984) On understanding a non-equilibrial world: myth and reality in community patterns and processes. In: Strong DR, Simberloff LG, Abele LG, Thistle AB (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, pp 439–457

    Google Scholar 

  • Wiens JA (1989) The ecology of bird communities. Cambridge University Press, Cambridge

    Google Scholar 

  • Wiens JA, Rotenberry JT (1979) Diet niche relationships among North American grassland and shrubsteppe birds. Oecologia 42: 253–292

    Google Scholar 

  • Wiens JA, Rotenberry JT (1980) Patterns of morphology and ecology in grassland and shrubsteppe bird populations. Ecol Monogr 50: 287–308

    Google Scholar 

  • Wiens JA, Rotenberry JT (1981) Habitat associations and community structure of birds in shrubsteppe environments. Ecol Monogr 51: 21–41

    Google Scholar 

  • Winding N (1985) Gemeinschaftsstruktur, Territorialität und anthropogene Beeinflussung der Kleinvögel im Glocknergebiet (Hohe Tauern, österreichische Zentralalpen). Veröff Österr MaB-Programm 9: 133–173

    Google Scholar 

  • Winding N (1990) Habitatnutzung alpiner Kleinvögel im Spätsommer/Herbst (Hohe Tauern, Österr. Zentralalpen): Autökologie und Gemeinschaftsmuster. Ökol Vögel 12: 13–37

    Google Scholar 

  • Winding N, Werner S, Stadler S, Slotta-Bachmayer L (1993) Die Struktur von Vogelgemeinschaften am alpinen Höhengradienten: quantitative Brutvogel-Bestandsaufnahmen in den Hohen Tauern (Österreichische Zentralalpen). Wiss Mitt Jahrb Nationalpark Hohe Tauern 1: 102–124

    Google Scholar 

  • Winkler H, Leisler B (1985) Morphological aspects of habitat selection in birds. In: Cody ML (ed) Habitat selection in birds. Academic Press, Orlando London, pp 415–434

    Google Scholar 

  • Zamora R (1990) Interspecific aggression by the wheatear in a high-mountain passerine community. Ornis Scand 21: 57–62

    Google Scholar 

  • Zamora R (1991) Avian habitat relationships in a mediterranean high mountain. Rev Ecol 46: 231–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landmann, A., Winding, N. Niche segregation in high-altitude Himalayan chats (Aves, Turdidae): does morphology match ecology?. Oecologia 95, 506–519 (1993). https://doi.org/10.1007/BF00317435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317435

Key words

Navigation