Skip to main content
Log in

The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

An episomal DNA vector (YpJA18), encoding two selectable recombinant yeast genes (TRP1, URA3), was constructed to assess the fidelity of DNA repair in haploid repair-competent (RAD) wild-type yeast and several radiation-sensitive mutants. Either a DNA double-strand break (DSB) or a double-strand gap of 169 bp (DSG) was introduced by restriction enzymes in-vitro within the coding sequence of the URA3 gene of this vector. To eliminate transfer artefacts, selection was first applied for the undamaged TRP1 gene followed by counter selection for URA3 gene activity, which indicated correct repair of the DSB and DSG. Correct repair of the damaged URA3 gene was found to be about 90% in RAD cells (normalized for the expression of undamaged URA3 in TRP + transformants). Plasmids isolated from the transformants (URA + TRP +) carry both unique sites (ApaI and NcoI) within the URA3 gene indicating the precise restitution of the 169-bp gap. An excision-repair-defective rad4-4 mutant repaired these lesions as correctly as RAD cells, whereas the mutants rad50-1, rad51-1 and rad54-1, proven to be defective in DSB repair and mitotic recombination, showed less than 5% correct repair of such lesions. In contrast, a representative of the RAD6 epistasis group of genes, the rev2-1 mutant which is sensitive towards UV and ionizing radiation, had a significantly reduced ability (about 20%) for the correct repair of both DSBs and DSGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahne F, Baur M, Eckardt-Schupp F (1992) Curr Genet 22:277–282

    Google Scholar 

  • Blöcher D, Pohlit W (1982) Int J Radiat Biol 42:329–338

    Google Scholar 

  • Bouffler SD, Jha B, Johnson RT (1990) Somatic Cell Mol Genet 16:451–460

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41:459–472

    Google Scholar 

  • Brendel M, Haynes RH (1973) Mol Gen Genet 125:197–216

    Google Scholar 

  • Budd M, Mortimer RK (1982) Mutat Res 103:19–29

    Google Scholar 

  • Cox R, Debenham PG, Masson WK, Webb MBT (1986) Mol Biol Med 3:229–244

    Google Scholar 

  • Debenham PG, Webb MBT, Jones NJ, Cox R (1987) J Cell Sci, suppl 6:177–189

    Google Scholar 

  • Debenham PG, Webb MBT, Strech A, Thacher J (1988) Mutat Res 199:145–158

    Google Scholar 

  • Eckardt-Schupp F, Ahne F (1993) Mutat Res (in press)

  • Falco SC, Rose M, Botstein D (1983) Genetics 105:843–856

    Google Scholar 

  • Frankenberg D, Frankenberg-Schwager M, Blöcher D, Harbich R (1981) Radiat Res 88:524–532

    Google Scholar 

  • Frankenberg-Schwager M (1989) Radiother Oncol 14:307–320

    Google Scholar 

  • Friedberg EC (1988) Microbiol Rev 52:70–102

    Google Scholar 

  • Friedberg EC, Siede W, Cooper AJ (1991) In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cell biology of the yeast Saccharomyces cerevisiae: genome, dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 147–192

    Google Scholar 

  • Game JC (1983) In: Spencer JFT, Spencer DH, Smith ARW (eds) Yeast genetics — fundamental and applied aspects. Springer, Berlin Heidelberg New York, pp 109–137

    Google Scholar 

  • Game JC, Mortimer RK (1974) Mutat Res 24:281–292

    Google Scholar 

  • Geigl E-M, Eckardt-Schupp F (1990) Mol Microbiol 4 (5):801–810

    Google Scholar 

  • Geigl E-M, Eckardt-Schupp F (1991a) Mol Microbiol 5(7):1615–1620

    Google Scholar 

  • Geigl E-M, Eckardt-Schupp F (1991b) Curr Genet 20:33–37

    Google Scholar 

  • Glaser VM, Glasunov AV, Tevzadze GG, Perera JR, Shestakov SV (1990) Curr Genet 18:1–5

    Google Scholar 

  • Haynes R, Kunz B (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 371–414

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Iliakis J, Blöcher D, Metzger L, Pantelias G (1991) Int J Radiat Biol 59:927–939

    Google Scholar 

  • Johnson RE, Henderson ST, Petes TD, Prakash S, Bankmann M, Prakash L (1992) Mol Cell Biol 12:3807–3818

    Google Scholar 

  • Kuo C, Campbell J (1983) Mol Cell Biol 3:1730–1737

    Google Scholar 

  • Lawrence C (1982) Adv Genet 21:173–254

    Google Scholar 

  • Lederberg E, Cohen S (1974) J Bacteriol 119:1072–1074

    Google Scholar 

  • Lemontt, JF (1971) Mutat Res 13:319–326

    Google Scholar 

  • Lemontt JF (1972) Mol Gen Genet 119:27–42

    Google Scholar 

  • Mc Kee RH, Lawrence CW (1980) Mutat Res 70:37–48

    Google Scholar 

  • Mezard C, Pompon D, Nicolas A (1992) Cell 70:659–670

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Proc Natl Acad Sci USA 80:4417–4421

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Perera JR, Glasunov AV, Glaser VM, Boreiko AV (1988) Mol Gen Genet 213:421–424

    Google Scholar 

  • Petes TD, Malone RE, Lorraine SS (1991) In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cell biology of the yeast Saccharomyces cerevisiae: genome dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 407–521

    Google Scholar 

  • Resnick MA (1987) Investigating the genetic control of biochemical events in meiotic recombination. In: Moens PB (ed) Meiosis. Academic Press, New York, pp 157–210

    Google Scholar 

  • Resnick MA, Martin P (1976) Mol Gen Genet 143:119–129

    Google Scholar 

  • Resnick MA, Zgaga Z, Hieter P, Westmoreland J, Fogel S, Nilsson-Tillgren T (1992) Mol Gen Genet 234:65–73

    Google Scholar 

  • Rose M, Winston F (1984) Mol Gen Genet 193:557–560

    Google Scholar 

  • Rose M, Grisafi P, Botstein D (1984) Gene 29:113–124

    Google Scholar 

  • Saeki T, Machida I, Nakai S (1980) Mutat Res 73:251–265

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Siede W, Brendel M (1981) Curr Genet 4:145–149

    Google Scholar 

  • Siede W, Eckardt-Schupp F (1986) Curr Genet 11:205–210

    Google Scholar 

  • Thacker J (1989) Mutat Res 220:187–204

    Google Scholar 

  • Ward JF (1990) Int J Radiat Biol 57:1141–1150

    Google Scholar 

  • Wendel S (1990) PhD thesis, Ludwig-Maximilians-Universität, München

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, B., Ahne, F. & Eckardt-Schupp, F. The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae . Curr Genet 23, 402–407 (1993). https://doi.org/10.1007/BF00312626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312626

Key words

Navigation