Skip to main content
Log in

Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The distribution of dopamine-containing perikarya and fibres in the central nervous system of the eel, Anguilla anguilla, was determined by using a specific dopamine antiserum. Telencephalic dopamine-immunoreactive somato are located in the external cell layer of the olfactory bulb and throughout the rostrocaudal extent of the subpallium; immunoreactive fibres are located primarily in the bulb and in ventral and lateral portions of the hemispheres. Diencephalic dopamine-immunoreactive neurons are associated with the ventricles in the preoptic area and hypothalamus and in the posterior tubercle. Many of the neurons in the hypothalamus are liquor-contacting. Very few immunoreactive neurons are located in the mesencephalon, and no dopamine-containing cells are found in regions that can be homologized with the ventral tegmental area and substantia nigra of amniotes. There is a rich innervation of the medial octavolateralis nucleus and certain layers of the torus semicircularis and of the tectum. dopamine-containing neurons are located in the vagal lobe, by the vagal motor nucleus and in the area postrema, which provides a rich dopaminergic innervation of the brainstem motor column and of the reticular formation. Immunoreactive liquor-contacting neurons line the central canal and another type of labelled neuron lies dorsally in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berod A, Hartman BK, Pujol JF (1981) Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem 29:844–850

    Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, Part 1, 1st edn, vol 2. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  • Braford MR, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish Neurobiology, 1st edn, vol 2. Univ Michigan Press, Ann Arbor, pp 117–163

    Google Scholar 

  • Buijs RM, Geffard M, Pool CW, Hoorneman EM (1984) The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res 323:65–72

    Google Scholar 

  • Chang JP, Peter RE (1983) Effects of dopamine on gonadotropin release in female goldfish, Carassius auratus. Neuroendocrinol 36:351–357

    Google Scholar 

  • Dowling JE (1986) Dopamine: a retinal neuromodulator? TINS 5:236

    Google Scholar 

  • Echteler SM, Saidel WM (1981) forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science 212:683–685

    Google Scholar 

  • Ekström P, Reschke M, Steinbusch H, Van Veen Th (1986) Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L.: an immunohistochemical analysis. J Comp Neurol 254:297–313

    Google Scholar 

  • Finger TE (1983) The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosus. J Comp Neurol 161:125–142

    Google Scholar 

  • Fingerman SW (1976) Circadian rhythms of brain 5-hydroxytryptamine (5HT) and swimming activity in the teleost, Fundulus grandis. Comp Biochem Physiol 54C:49–53

    Google Scholar 

  • Foote SL, Freedman R, Oliver AP (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex Brain Res 86:229–242

    Google Scholar 

  • Freed CR, Yamamoto BK (1985) Regional brain dopamine metabolism: a marker for the speed, direction, and posture of moving animals. Science 229:62–64

    Google Scholar 

  • Fremberg M, Van Veen TH, Hartwig HG (1977) Formaldehydeinduced fluorescence in the telencephalon and diencephalon of the eel (Anguilla anguilla L.). Cell Tissue Res 176:1–22

    Google Scholar 

  • Fryer JN, Maler L (1981) Hypophysiotropic neurons in the goldfish hypothalamus demonstrated by retrograde transport of horseradish peroxidase. Cell Tissue Res 218:93–102

    Google Scholar 

  • Fryer JN, Boudreault-Chateauvert C, Kirby RP (1985) Pituitary afferents originating in the paraventricular organ (PVO) of the goldfish hypothalamus. J Comp Neurol 242:475–484

    Google Scholar 

  • Fuxe K, Agnati LF, Kalia M, Goldstein M, Andersson K, Härfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Flückiger E, Müller EE, Thorner MO (eds) The Dopaminergic System, 1st edn, Springer, Berlin Heidelberg New York, pp 11–25

    Google Scholar 

  • Geffard M, Buijs RM, Seguela P, Pool CW, Le Moal M (1984) First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294:161–165

    Google Scholar 

  • Genot G, Soulier Ph, Chèze G (1976) Relation entre le taux de sérotonine dans l'encéphale et l'activité motrice spontaneé de l'Anguilla. J Physiol (Paris 72:42A

  • Halpern-Sebold LR, Margolis-Kazan H, Schreibman MP, Joh TH (1985) Immunoreactive tyrosine hydroxylase in the brain and pituitary gland of the platyfish. Proc Soc Exp Bio Med 178:486–489

    Google Scholar 

  • Hornby PJ, Piekut DT (1988) Immunoreactive dopamine β-hydroxylase in neuronal groups in the goldfish brain. Brain Behav Evol 32:252–256

    Google Scholar 

  • Hornby PJ, Piekut DT, Demski LS (1987) Localization of immunoreactive tyrosine hydroxylase in the goldfish brain. J Comp Neurol 261:1–15

    Google Scholar 

  • Ito H, Murakami T, Fukuoka T, Kishida R (1986) Thalamic fiber connections in a teleost (Sebastiscus marmoratus): visual somatosensory, octavolateral, and cerebellar relay region to the telencephalon. J Comp Neurol 250:215–227

    Google Scholar 

  • Jaeger CB, Nicholson C (1986) Monoamine neuron systems in the brain of the skate. Soc Neurosci 12:1288

    Google Scholar 

  • Kah O, Chambolle P, Thibault J, Geffard M (1984) Existence of dopaminergic neurons in the preoptic region of the goldfish. Neurosci Lett 48:293–298

    Google Scholar 

  • Karasawa N, Yoshida M, Kawakami-Kondo Y, Okumura A, Sato T, Nagatsu I (1984) Immunohistochemical demonstration of ‘big monoaminergic neurons’ of the goldfish hypothalamus. Biogenic Amines 1:133–141

    Google Scholar 

  • Kössl M, Vater M, Schweizer H (1988) Distribution of catecholamine fibers in the cochlear nucleus of horseshoe bats and mustache bats. J Comp Neurol 269:523–534

    Google Scholar 

  • Kravitz EA (1988) Hormonal control of behaviour: Amines and the biasing of behavioral output in lobsters. Science 241:1775–1781

    Google Scholar 

  • Lauder GV, Liem KF (1983) Patterns of diversity and evolution in ray-finned fishes. In: Northcutt RC, David RE (eds) Fish Neurobiology, 1st edn, vol 1. Univ Michigan Press, Ann Arbor, pp 2–24

    Google Scholar 

  • Le Bras YM (1979) Circadian rhythm in brain catecholamine concentrations in the teleost: Anguilla anguilla L. Comp Biochem Physiol 62C:115–117

    Google Scholar 

  • Lefranc G, L'Hermite A, Tusques J (1969) Mise en évidence de neurones monoaminergiques par la technique de fluorescence dans l'encéphale d'Anguilla. C R Soc Biol (Paris) 163:1193–1196

    Google Scholar 

  • Lefranc G, L'Hermite A, Tusques J (1970) Etude topographique et cytologique des différents noyaux monoaminergiques de l'encéphale d'Anguilla anguilla. C R Soc Biol (Paris) 164:1629–1632

    Google Scholar 

  • L'Hermite A, Lefranc G (1972) Recherches sur les voies monoaminergiques de l'encéphale d'Anguilla vulgaris. Arch Anat Microsc Morphol Exp 61:139–152

    Google Scholar 

  • Martres M-P, Bouthenet M-L, Sales N, Sokoloff P, Schwartz J-C (1985) Widespread distribution of brain dopamine receptors evidenced with [125I] Iodoisulpride, a highly selective ligand. Science 228:752–754

    Google Scholar 

  • Meek J, Joosten HWJ, Steinbusch HWM (1989) The distribution of dopamine-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 282:362–383

    Google Scholar 

  • Meredith GE, Smeets WJAJ (1987) Immunocytochemical analysis of the dopamine system in the forebrain and midbrain of Raja radiata: evidence for a substantia nigra and ventral tegmental area in cartilaginous fish. J Comp Neurol 265:530–548

    Google Scholar 

  • Morita Y, Finger TE (1985) Reflex connections of the facial and vagal gustatory systems in the brainstem of the bullhead catfish, Ictalurus nebulosus. J Comp Neurol 231:547–558

    Google Scholar 

  • Morita Y, Finger TE (1987) Area postrema of the goldfish, Carassius auratus: ultrastructure, fiber connections, and immunocytochemistry. J Comp Neurol 256:104–116

    Google Scholar 

  • Mouchet P, Manier M, Dietl M, Feuerstein C, Berod A, Arluison M, Denoroy L, Thibault J (1986) Immunohistochemical study of catecholaminergic cell bodies in the rat spinal cord. Brain Res Bull 16:341–353

    Google Scholar 

  • Nieuwenhuys R (1963) The comparative anatomy of the actinopterygian forebrain. J Hirnforsch 3:171–192

    Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the Brain, 1st edn, Springer, Berlin, 246 p

    Google Scholar 

  • Nieuwenhuys R, Pouwels E (1983) The brain stem of actinopterygian fishes. In: Northcutt RG, Davis RE (eds) Fish Neurobiology, 1st edn, vol 1. Univ Michigan Press, Ann Arbor, pp 25–87

    Google Scholar 

  • Northcutt RG, Davis R (1983) Telencephalic organization in rayfinned fishes. In: Davis RE, Northeutt RG (eds) Fish Neurobiology, 1st edn, vol 2. Univ Michigan Press, Ann Arbor, pp 203–236

    Google Scholar 

  • Northcutt RG, Reiner A, Karten HJ (1988) An immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 277:250–267

    Google Scholar 

  • Oades RD (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev 9:261–282

    Google Scholar 

  • Parent A (1983) The monoamine-containing neuronal systems in the teleostean brain. In: Davis RE, Northcutt RG (eds) Fish Neurobiology, 1st edn, vol 2. University of Michigan Press, Ann Arbor, pp 285–315

    Google Scholar 

  • Parent A, Dubé L, Braford Jr MR, Northcutt RG (1978) The organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy. J Comp Neurol 182:495–516

    Google Scholar 

  • Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, Part 1, 1st edn, vol 2. Elsevier, Amsterdam, pp 409–439

    Google Scholar 

  • Peter RE, Fryer JN (1983) Endocrine functions of the hypothalamus of actinopterygians. In: Northcutt RG, Davis RE (eds) Fish Neurobiology, 1st edn, vol 2. Univ Michigan Press, Ann Arbor, pp 165–202

    Google Scholar 

  • Peter RE, Gill VE (1975) A stereotaxic atlas and technique for forebrain nuclei of the goldfish. Carassius auratus. J Comp Neurol 159:69–102

    Google Scholar 

  • Peter RE, McKeown BA (1974) Control of prolactin secretion in the goldfish, Carassius auratus. In: Knowles F, Vollrath L (eds) Neurosecretion the Final Neuroendocrine Pathway, 1st edn, Springer, Berlin Heidelberg New York, pp 193–197

    Google Scholar 

  • Poon MLT (1980) Induction of swimming in lamprey by L-DOPA and amino acids. J Comp Physiol 136:337–344

    Google Scholar 

  • Reiner A, Northcutt RG (1987) An immunohistochemical study of the telencephalon of the African lungfish, Protopterus annectens. J Comp Neurol 256:463–481

    Google Scholar 

  • Roberts BL, Meredith GE (1987) Immunohistochemical study of a dopaminergic system in the spinal cord of the ray, Raja radiata. Brain Res 437:171–175

    Google Scholar 

  • Rogawaski MA, Aghajanian GK (1980) Norepinephrine and serotonin: opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Exp Neurol 69:678–694

    Google Scholar 

  • Schroeder DM (1980) The telencephalon of teleosts. In: Ebbeson SOL (ed) Comparative Neurology of the Telencephalon, 1st edn. Plenum Press, New York, pp 99–115

    Google Scholar 

  • Smeets WJAJ (1988) Distribution of dopamine immunoreactivity in the forebrain and midbrain of the snake Python regius: a study with antibodies against dopamine. J Comp Neurol 271:104–116

    Google Scholar 

  • Smeets WJAJ, Steinbusch HWM (1988) New insights into the catecholaminergic systems of reptiles. Soc Neurosci 14:640

    Google Scholar 

  • Smeets WJAJ, Hoogland PV, Voorn P (1986) The distribution of dopamine immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko: An immunohistochemical study with antibodies against dopamine. J Comp Neurol 253:46–60

    Google Scholar 

  • Smeets WJAJ, Jonker J, Hoogland PV (1987) Distribution of dopamine in the forebrain and midbrain of the red-eared turtle, Pseudemys scripta elegans, reinvestigated using antibodies against dopamine. Brain Behav Evol 30:121–142

    Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry. John Willey and Sons, New York, p 345

    Google Scholar 

  • Voorn P, Jorritsma-Byham B, van Dijk C, Buijs RM (1986) The dopaminergic innervation of the ventral striatum in the rat: A light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    Google Scholar 

  • Watson AHD (1980) The distribution of aminergic neurones and their projections in the brain of the teleost, Myoxocephalus scorpius. Cell Tissue Res 208:299–312

    Google Scholar 

  • Williams BJ, Droge MH, Hester K, Leonard RB (1981) Induction of swimming in the high spinal stingray by L-DOPA. Brain Res 220:208–213

    Google Scholar 

  • Witkovsky P, Stone S, Beharse JC (1988) Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina. Brain Res 449:332–336

    Google Scholar 

  • Wullimann MF, Northcutt RG (1988) Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav Evol 32:293–316

    Google Scholar 

  • Yoshida M, Nagatsu I, Kawakami-Kondo Y, Karasawa N, Spatz M, Nagatsu T (1983) Monoaminergic neurons in the brain of goldfish as observed by immunohistochemical techniques. Experientia 39:1171–1174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, B.L., Meredith, G.E. & Maslam, S. Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla . Anat Embryol 180, 401–412 (1989). https://doi.org/10.1007/BF00311171

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311171

Key words

Navigation