Skip to main content
Log in

A model of water allocation in alkali feldspar, derived from infrared-spectroscopic investigations

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polarizedinfrared (IR) spectra of sanidine crystals from Volkesfeld, Eifel show the existence of two broad pleochroic absorption bands at 3,400 and 3,050 cm−1. Because overtones near 5,150 cm−1 were observed, the former bands are assigned to OH stretching frequencies of H2O molecules. On the basis of the pleochroic scheme of the bands it is proposed that H2O molecules occur as structural constituents entering theM site of the sanidine structure; the plane of the H2O molecules lies parallel to the symmetry plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319–327

    Google Scholar 

  • Bank H (1967) Hellbrauner klar durchsichtiger Alkalifeldspat von Volkesfeld-Eifel. Z Dtsch Ges Edelsteink 61:50–53

    Google Scholar 

  • Beran A (1974) UR-spektroskopischer Nachweis von H2O in Nephelin. Tschermaks Mineral Petrogr Mitt 21:299–304

    Google Scholar 

  • Beran A (1976) Messung des Ultrarot-Pleochroismus von Mineralen. XIV. Der Pleochroismus der OH-Streckfrequenz von Diopsid. Tschermaks Mineral Petrogr Mitt 23:79–85

    Google Scholar 

  • Beran A, Putnis A (1983) A model of the OH positions in olivine, derived from infrared-spectroscopic investigations. Phys Chem Minerals 9:57–60

    Google Scholar 

  • Bertelmann D, Förtsch E, Wondratschek H (1985) Zum Temperverhalten von Sanidinen: Die Ausnahmerolle der Eifelsanidin-Megakristalle. Neues Jahrb Mineral Abh 152:123–141

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1963) Rock-forming Minerals, Vol 4: Framework Silicates. Longmans, London

    Google Scholar 

  • Frechen J (1976) Siebengebirge am Rhein-Laacher Vulkangebiet-Maargebiet der Westeifel. Sammlung Geologischer Führer 56. Borntraeger, Berlin-Stuttgart.

    Google Scholar 

  • Gandais M, Willaime C (1984) Mechanical properties of feldspars. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 207–246

    Google Scholar 

  • Griggs D (1967) Hydrolytic weakening of quartz and other silicates. Geophys J R Astron Soc 14:19–31

    Google Scholar 

  • Hamilton WC, Ibers JA (1968) Hydrogen Bonding in Solids. Benjamin, New York Amsterdam

    Google Scholar 

  • Hofmeister AM, Rossman GR (1983) Color in feldspars. In: Ribbe PH (ed) Feldspar Mineralogy, Rev Mineral 2. Miner Soc Am, pp 271–280

  • Hofmeister AM, Rossman G (1984) Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Phys Chem Minerals 11:213–224

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985a) A spectroscopic study of irradiation coloring of amazonite: structurally hydrous, Pbbearing feldspar. Am Mineral 70:794–804

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985b) A model for the irradiative coloration of smoky feldspar and the inhibiting influence of water. Phys Chem Minerals 12:324–332

    Google Scholar 

  • Kroll H (1984) Thermal expansion of alkali feldspars. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 163–205

    Google Scholar 

  • Laves F, Hafner S (1962) Infrared absorption effects, nuclear magnetic resonance and structure of feldspars. Nor Geol Tidsskr 42/2:57–71

    Google Scholar 

  • Lehmann G (1984) Spectroscopy of feldspars. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 121–162

    Google Scholar 

  • Machatschki F (1928) Zur Frage der Struktur und Konstitution der Feldspate. Centr Mineral Geol Paläont A/1928:97–104

    Google Scholar 

  • Martin RF, Donnay G (1972) Hydroxyl in the mantle. Am Mineral 57:554–570

    Google Scholar 

  • Petrov I, Hafner SS (1985) Paramagnetische Elektronenresonanz von Fe3+ in Sanidin. Fortschr Mineral 63 Beih 1:180

    Google Scholar 

  • Ribbe PH (1983) Chemistry, structure and nomenclature of feldspars. In: Ribbe PH (ed) Feldspar Mineralogy, Rev Mineral 2. Miner Soc Am, pp 1–19

  • Ribbe PH (1984) Average structures of alkali and plagioclase feldspars: systematics and applications. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 1–54

    Google Scholar 

  • Smith JV (1974a) Feldspar Minerals, Vol. 1: Crystal Structure and Physical Properties. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith JV (1974b) Feldspar Minerals, Vol 2: Chemical and Textural Properties. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Speit B, Lehmann G (1976) Hole centers in the feldspar sanidine. Phys status solidi 36:471–481

    Google Scholar 

  • Stewart DB, Ribbe PH (1983) Optical properties of feldspars. In: Ribbe PH (ed) Feldspar Mineralogy, Rev Mineral 2. Miner Soc Am, pp 121–139

  • Su SC, Bloss FD, Ribbe PH, Stewart DB (1984) Optic axial angle, a precise measure of Al, Si ordering in T1 tetrahedral sites of K-rich alkali feldspars. Am Mineral 69:440–448

    Google Scholar 

  • Taylor WH (1933) The structure of sanidine and other feldspars. Z Kristallogr 85:425–442

    Google Scholar 

  • Tullis J (1983) Deformation of feldspars. In: Ribbe PH (ed) Feldspar Mineralogy, Rev Mineral 2. Miner Soc Am, pp 297–323

  • Weitz G (1972) Die Struktur des Sanidins bei verschiedenen Ordnungsgraden. Z Kristallogr 136:418–426

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

  • Yund RA (1983) Diffusion in feldspars. In: Ribbe PH (ed) Feldspar Mineralogy, Rev Mineral 2. Miner Soc Am, pp 203–222

  • Yund RA (1984) Alkali feldspar exsolution: kinetics and dependence on alkali interdiffusion. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 281–315

    Google Scholar 

  • Zeipert Ch, Wondratschek H (1981) Ein ungewöhnliches Temperverhalten bei Sanidin von Volkesfeld/Eifel. Neues Jahrb Mineral Mh 1981:407–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beran, A. A model of water allocation in alkali feldspar, derived from infrared-spectroscopic investigations. Phys Chem Minerals 13, 306–310 (1986). https://doi.org/10.1007/BF00308347

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308347

Keywords

Navigation