Skip to main content
Log in

Vasoactive intestinal polypeptide (VIP)-containing neurons: distribution throughout the brain of the chick (Gallus domesticus) with focus upon the lateral septal organ

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The distribution of VIP-like perikarya and fibers was determined throughout the chick brain. The most rostral immunoreactive perikarya were found to be cerebrospinal fluid-contacting neurons in the pars medialis of the lateral septal organ. Additional data were presented supporting the idea that the lateral septal organ is another circumventricular organ within the brain of birds (Kuenzel and van Tienhoven 1982). A large group of immunoreactive perikarya was found in the lateral hypothalamic area and appeared continuous with immunoreactive neurons in the anterior medial and ventromedial hypothalamic nuclei (n). A few perikarya were located in the paraventricular hypothalamic n. A number of immunoreactive neurons were found within and about the infundibular and inferior hypothalamic n., none however was immunoreactive cerebrospinal fluid-contacting neurons. Immunoreactive perikarya were found predominantly in laminae 10–11 of the stratum griseum et fibrosum superficiale. A few scattered perikarya were found ventromedial to the n. tegmenti pedunculo-pontinus pars compacta and locus ceruleus. Some of the immunoreactivity was unusual, being very homogeneous within the cell body with little evidence of the material in the axon or dendrites. Perikarya were found in the central gray, n. intercollicularis, and area ventralis of Tsai. The most caudal structure showing immunoreactive neurons was the n. reticularis paragigantocellularis lateralis. Brain areas containing the most abundant immunoreactive fibers, listed from the rostral-most location, were found in the ventromedial region of the lobus parolfactorius and the lateral septal n. Continuing caudally, there were immunoreactive fibers within the periventricular hypothalamic n.; some of the fibers were found to travel for some distance parallel to the third ventricle. Dense immunoreactive fibers were found in the tractus cortico-habenularis et cortico-septalis, medial habenular n. and posterior and dorsal n. of the archistriatum. A number of areas had what appeared to be baskets of immunoreactive fibers (perhaps immunoreactive terminals) surrounding non-reactive perikarya. Brain areas containing terminals included the piriform cortex, area ventralis of Tsai, interpeduncular n., and specific regions of the stratum griseum et fibrosum superficiale. A very dense immunoreactivity occurred within the external zone of the median eminence, the dorsolateral parabrachial n., and n. tractus solitarii. Vasoactive intestinal polypeptide appears to be a useful peptide for defining the neuroanatomical constituents of the visceral forebrain in birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahren B, Alumets J, Ericson M, Fahrenkrug J, Fahrenkrug L, Håkanson R, Hedner P, Loren I, Melander A, Rerup C, Sundler F (1980) VIP occurs in intrathyroidal nerves and stimulates thyroid hormone secretion. Nature 287:343–345

    Article  CAS  PubMed  Google Scholar 

  • Andersson P-O, Bloom SR, Edwards AV, Jarhult J (1982) Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J Physiol (Lond) 322:469–483

    Article  CAS  Google Scholar 

  • Arends JJA, Wild JM, Zeigler HP (1988) Projections of the nucleus of the tractus solitarius in the pigeon (Columba livia). J Comp Neurol 278:405–429

    Article  CAS  PubMed  Google Scholar 

  • Berk ML (1991) Distribution and hypothalamic projection of tyrosine-hydroxylase containing neurons of the nucleus of the solitary tract in the pigeon. J Comp Neurol 312:391–403

    Article  CAS  PubMed  Google Scholar 

  • Bloom SR, Edwards AV (1980) Vasoactive intestinal peptide in relation to atropine resistant vasodilation in the submaxillary gland of the cat. J Physiol 300:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenneman DE, Eiden LE (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci USA 83:1159–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadwell RD, Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166:257–284

    Article  CAS  PubMed  Google Scholar 

  • Card JP, Moore RY (1984) The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution. Neuroscience 13:415–431

    Article  CAS  PubMed  Google Scholar 

  • Chihara K, Iwasaki J, Minamitani N, Kaji H, Matsukura S, Tamaki N, Matsumota S, Fujita T (1982) Effect of vasoactive intestinal polypeptide on growth hormone secretion in perfused acromegalic pituitary adenoma tissues. J Clin Endocrinol Metab 54:733–779

    Article  Google Scholar 

  • Frawley LS, Neill JD (1981) Stimulation of prolactin secretion in rhesus monkeys by vasoactive intestinal polypeptide. Neuroendocrinology 33:79–83

    Article  PubMed  Google Scholar 

  • Gerstberger R (1988) Functional vasoactive intestinal polypeptide (VIP) system in salt glands of the Pekin duck. Cell Tissue Res 252:39–48

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Meltzer E, Rubinrout S, Brenneman DE, Fridkin M (1989) Vasoactive intestinal peptide potentiates sexual behavior: inhibition by novel antagonist. Endocrinology 125:2945–2949

    Article  CAS  PubMed  Google Scholar 

  • Heistad DD, Marcus ML, Said SI, Gross PM (1980) Effect of acetycholine and vasoactive intestinal peptide on cerebral blood flow. Am J Physiol 239:H73-H80

    CAS  PubMed  Google Scholar 

  • Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38

    Article  CAS  PubMed  Google Scholar 

  • Hof RR, Dietl MM, Charnay Y, Martin J-L, Bouras C, Palacios JM, Magistretti PJ (1991) Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon, Columba livia: an autoradiographic and immunohistochemical study. J Comp Neurol 305:393–411

    Article  CAS  PubMed  Google Scholar 

  • Hohmann EL, Levine L, Tashjian AH (1983) Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3′,5′-monophosphate dependent mechanism. Endocrinology 112: 1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Hsu SM, Raine EL, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  CAS  PubMed  Google Scholar 

  • Jahnke HJ, Abs M (1982) Vocalization after electrostimulation of the brain of pigeons in relation to heart- and breathing-rates. Behav Brain Res 5:65–72

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Iwasaki Y, Iwasaki J, Abe H, Yanaihara N, Imura H (1978) Prolactin release by vasoactive intestinal peptide in rats. Endocrinology 103:554–558

    Article  CAS  PubMed  Google Scholar 

  • Katz DM, Karten HJ (1979) The discrete anatomical localization of vagal aortic afferents within a catecholamine-containing cell group in the nucleus solitarius. Brain Res 171:187–195

    Article  CAS  PubMed  Google Scholar 

  • Katz DM, Karten HJ (1983a) Subnuclear organization of the dorsal motor nucleus of the vagus nerve in the pigeon, Columba livia. J Comp Neurol 217:31–46

    Article  CAS  PubMed  Google Scholar 

  • Katz DM, Karten HJ (1983b) Visceral representation within the nucleus of the tractus solitarius in the pigeon, Columba livia. J Comp Neurol 218:42–73

    Article  CAS  PubMed  Google Scholar 

  • Korf H-W, Fahrenkrug J (1984) Ependymal and neuronal specializations in the lateral ventricle of the Pekin duck, Anas platyrhynchos. Cell Tissue Res 236:217–227

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ (1993) The search for deep encephalic photoreceptors within the avian brain using gonadal development as a primary indicator. Poult Sci 72(5):959–967

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ, Blähser S (1991) The distribution of gonadotropin-releasing hormone (GnRH) neurons and fibers throughout the chick brain (Gallus domesticus). Cell Tissue Res 264:481–495

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brain of the chick (Gallus domesticus). Johns Hopkins University Press, Baltimore, Maryland

    Google Scholar 

  • Kuenzel WJ, Tienhoven A van (1982) Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J Comp Neurol 206:293–313

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL, Cohen DH (1973) Heart rate and blood pressure responses to electrical stimulation of the central nervous system in the pigeon (Columba livia). J Comp Neurol 150:109–136

    Article  CAS  PubMed  Google Scholar 

  • Macnamee MC, Sharp PJ, Lea RW, Sterling RJ, Harvey S (1986) Evidence that vasoactive intestinal polypeptide is a physiological prolactin-releasing factor in the Bantam hen. Gen Comp Endocrinol 62:470–478

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci USA 78:6535–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro LJ, Elde RP, Youngren OM, Phillips RE, El Halawani ME (1989) Alterations in hypothalamic vasoactive intestinal peptide-like immunoreactivity are associated with reproduction and prolactin release in the female turkey. Endocrinology 125:1795–1804

    Article  CAS  PubMed  Google Scholar 

  • McCulloch J, Kelly PAT, Uddman R, Edvinsson L (1983) Functional role of vasoactive intestinal polypeptide in the caudate nucleus: a 2-deoxy (14C) glucose investigation. Proc Natl Acad Sci USA 80:1472–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami S (1986) Immunocytochemistry of the avian hypothalamus and adenohypophysis. Int Rev Cytol 103:189–248

    Article  CAS  PubMed  Google Scholar 

  • Mikami S, Yamada S (1984) Immunohistochemistry of the avian hypothalamus and adenohypophysis. Int Rev Cytol 103:189–248

    Article  Google Scholar 

  • Mogensen J, Divac I (1982) The prefrontal “cortex” in the pigeon. Behavioral evidence. Brain Behav Evol 21:60–66

    Article  CAS  PubMed  Google Scholar 

  • Moore RY (1983) Organization and function of the central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42:2783–2789

    CAS  PubMed  Google Scholar 

  • Nilsson A (1975) Structure of the vasoactive intestinal octacosapeptide from chicken intestine. The amino acid sequence. FEBS Lett 60:322–326

    Article  CAS  PubMed  Google Scholar 

  • Norgren RB Jr, Silver R (1990) Distribution of vasoactive intestinal peptide-like and neurophysin-like immunoreactive neurons and acetylcholinesterase staining in the ring dove hypothalamus with emphasis on the question of an avian suprachiasmatic nucleus. Cell Tissue Res 259:331–339

    Article  PubMed  Google Scholar 

  • Oliva D, Nicosia S, Spada A, Giannattasio GL (1982) VIP stimulates ACTH release and adenylate cyclase in human ACTH-secreting pituitary adenomas. Eur J Pharmacol 83:101–105

    Article  CAS  PubMed  Google Scholar 

  • Opel H, Proudman JA (1988) Stimulation of prolactin release in turkeys by vasoactive intestinal peptide. Proc Soc Exp Biol Med 187:455–460

    Article  CAS  PubMed  Google Scholar 

  • Ottesen B, Hansen B, Fahrenkrug J, Fuchs A-R (1984) Vasoactive intestinal peptide stimulates oxytocin and vasopressin release from the neurohypophysis. Endocrinology 115:1648–1650

    Article  CAS  PubMed  Google Scholar 

  • Péczely P, Kiss JZ (1988) Immunoreactivity to vasoactive intestinal polypeptide (VIP) and thyreotropin-releasing hormone (TRH) in hypothalamic neurons of the domesticated pigeon (Columba livia). Alterations following lactation and exposure to cold. Cell Tissue Res 251:485–494

    Article  PubMed  Google Scholar 

  • Peek FW, Phillips RE (1971) Repetitive vocalizations evoked by local electrical stimulation of avian brains. II. Anesthetized chickens (Gallus gallus). Brain Behav Evol 4:417–438

    Article  CAS  PubMed  Google Scholar 

  • Petko M, Ihionvien M (1989) Distribution of substance P, vasoactive intestinal polypeptide and serotonin immunoreactive structures in the central nervous system of the lizard. Lacerta agilis. J Hirnforsch 30:415–423

    CAS  PubMed  Google Scholar 

  • Proudman JA, Opel H (1983) Stimulation of prolactin and growth hormone secretion from turkey pituitary cells. Poultry Sci 62:1484–1485

    Google Scholar 

  • Rotsztejn WH, Benoist L, Besson J, Beraud G, Kordon C, Rosselin G, Duval J (1980) Effect of vasoactive intestinal peptide (VIP) on the release of various adenohypophysial hormones from purified cells obtained by unit gravity sedimentation. Inhibition by dexamethasone of VIP-induced prolactin release. Neuroendocrinology 3:282–286

    Article  Google Scholar 

  • Seller T (1980) Midbrain regions involved in call production in Java sparrows. Behav Brain Res 1:257–265

    Article  CAS  PubMed  Google Scholar 

  • Sharp PJ, Sterling RJ, Talbot RT, Huskisson NS (1989) The role of hypothalamic vasoactive intestinal polypeptide in the maintenance of prolactin secretion in incubating bantam hens: observations using passive immunization, radioimmunoassay and immunohistochemistry. J Endocrinol 122:5–13

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Taira N (1979) Assessment of the effects of vasoactive intestinal peptide (VIP) on blood flow through and salivation of the dog salivary gland in comparison with those of secretin, glucagon and acetylcholine. Br J Pharmacol 65:683–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver RP, Witkovsky P, Horvath P, Alones V, Barnstable CJ, Lehman MN (1988) Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell Tissue Res 253:189–198

    Article  CAS  PubMed  Google Scholar 

  • Stobie KM, Weick RF (1989) Vasoactive intestinal peptide inhibits luteinizing hormone secretion: in inhibition is not mediated by dopamine. Neuroendocrinology 49:597–603

    Article  CAS  PubMed  Google Scholar 

  • van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1–24

    Article  PubMed  Google Scholar 

  • Vigh B (1971) Das Paraventrikularorgan und das zirkumventrikuläre System des Gehirns. Stud Biol Hung, vol 10, Akad Kiadó, Budapest

    Google Scholar 

  • Waldmann C, Güntürkün O (1993) The dopaminergic innervation of the pigeon caudolateral forebrain: immunocytochemical evidence for a “prefrontal cortex” in birds? Brain Res 600:225–234

    Article  CAS  PubMed  Google Scholar 

  • White MC, Adams EF, Loizou M, Mashiter K (1982) Vasoactive intestinal peptide stimulates adrenocorticotropin release from human corticotropinoma cells in culture: interaction with arginine vasopressin and hydrocortisone. J Clin Endocrinol Metab 55:967–972

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Arends JJA (1987) A respiratory-vocal pathway in the brainstem of the pigeon. Brain Res 407:191–194

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Arends JJA, Zeigler HP (1990) Projections of the parabrachial nucleus in the pigeon (Columba livia). J Comp Neurol 293:499–523

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Mikami S, Yanaihara N (1982) Immunohistochemical localization of vasoactive intestinal polypeptide (VIP)-containing neurons in the hypothalamus of the Japanese quail, Coturnix coturnix. Cell Tissue Res 226:13–26

    Article  CAS  PubMed  Google Scholar 

  • Yuwiler A (1983) Light and agonists alter pineal N-acetyl-transferase induction by vasoactive intestinal polypeptide. Science 220:1082–1083

    Article  CAS  PubMed  Google Scholar 

  • Zeier H, Karten HJ (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res 31:313–326

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuenzel, W.J., Blähser, S. Vasoactive intestinal polypeptide (VIP)-containing neurons: distribution throughout the brain of the chick (Gallus domesticus) with focus upon the lateral septal organ. Cell Tissue Res 275, 91–107 (1994). https://doi.org/10.1007/BF00305378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305378

Key words

Navigation