Skip to main content
Log in

Activity coefficients of KCl in highly concentrated protein solutions

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

As a contribution to the understanding of the thermodynamic state of single salts in living systems, the activity coefficients of KCl were determined in concentrated bovine serum albumin (BSA) solutions. The concentration range studied was 0.01 to 0.5 M KCl and zero to 18% wt BSA, thus amply covering physiological conditions. The activity coefficients of the salt were measured using the EMF method with ion exchange membrane electrodes. Keeping the salt concentration constant, the activity coefficients of the salt decrease linearly with protein concentration, the effect being more pronounced for low salt content. The maximal deviations of the activity coefficients with respect to those in pure salt solution amount to ca. 40% for 0.01 M KCl and 18% wt BSA. The results were interpreted on the assumption of the superposition of three effects i.e. water bound to BSA molecules as “non-solvent” water, specific Cl ion binding and the electrostatic interactions of the polyions with the salt ions. In view of the results it can be concluded that only a small portion of simple intracellular ions are bound, based on the assumption that the cytoplasm of living cells may be regarded as a concentrated protein-salt solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amberg CH (1957) Heats of adsorption of water on bovine serum albumin. J Am Chem Soc 79:3980–3984

    Google Scholar 

  • Baker HP, Saroff HA (1965) Binding of sodium ions to β-lactoglobulin. Biochemistry 4:1670–1677

    Google Scholar 

  • Bull HB, Breese K (1968) Protein hydration I. Binding sites. Arch Biochem Biophys 128:488–496

    Google Scholar 

  • Carr CW (1952) Studies on the binding of small ions in protein solutions with the use of membrane electrodes I. The binding of the chloride ion and other inorganic anions in solution of serum albumin. Arch Biochem Biophys 40: 286–294

    Google Scholar 

  • Carr CW (1968) Applications of membrane electrodes. Ann NY Acad Sci 148:180–190

    Google Scholar 

  • Carrol WR, Callanan MJ, Saroff HA (1959) Physical and chemical properties of protamine from the sperm of salmon (Oncorhynchus tschawytscha) II. Anion binding characteristics. J Biol Chem 234:2314–2316

    Google Scholar 

  • Cox DJ, Schumaker VN (1961) The preferential hydratation of proteins in concentrated salt solutions I. Sedimentation studies. J Am Chem Soc 83:2433–2438

    Google Scholar 

  • Giese AC (1973) Cell physiology, 4th edn. WB Saunders, Philadelphia, p 56

    Google Scholar 

  • Grigera JR, Mascarenhas S (1978) A model for NMR, dielectric relaxation and electret behavior of bound water in proteins. Studia Biophysica 73:19–24

    Google Scholar 

  • Hale KD, Govindan KP (1969) Bi-ionic potentials with sulfonic and phosphonic acid cation-exchange membranes. J Electrochem Soc 116:1373–1381

    Google Scholar 

  • Hasl G, Pauly H (1973) Schmelzverhalten und kalorische Eigenschaften einer Mischung von Rinderserumalbumin, Kochsalz und Wasser. Biophysik 10:125–136

    Google Scholar 

  • Hinz HJ (1983) Thermodynamics of protein-ligand interactions: Calorimetric approaches. Annu Rev Biophys Bioeng 12:285–317

    Google Scholar 

  • Kwak JCT (1973) Mean activity coefficients for the simple electrolyte in aqueous mixtures of polyelectrolyte and simple electrolyte. The system sodium polystyrenesulfonatesodium chloride. J Phys Chem 77:2790–2793

    Google Scholar 

  • Kwak JCT, O'Brien MC, MacLean DA (1975) Mean activity coefficients for the simple electrolyte in Aqueous mixtures of polyelectrolyte and simple electrolyte. The system potassium chloride-potassium poly(styrenesulfonate), magnesium chloride-magnesium poly(styrenesulfonate) and calcium chloride-calcium poly(styrenesulfonate). J Phys Chem 79:2381–2386

    Google Scholar 

  • Kwak JCT, Morrison NJ, Spiro EJ, Iwasa K (1976) Mean activity coefficients for the simple electrolyte in aqueous mixtures of polyelectrolyte and simple electrolyte. The mixed counterion system Na+, Ca2+, Cl, polystyrenesulfonate. J Phys Chem 80:2753–2761

    Google Scholar 

  • Lewis MS, Saroff HA (1957) The binding of ions to the muscle protein. Measurements of the binding of potassium and sodium ions to myosin A, myosin B and actin. J Am Chem Soc 79:2112–2117

    Google Scholar 

  • Loeb GI, Saroff HA (1964) Chloride- and hydrogen-ion binding to ribonuclease. Biochemistry 3:1819–1826

    Google Scholar 

  • Lyons JW, Kotin L (1965) Ion binding in polyelectrolyte systems with or without added salt. J Am Chem Soc 87: 1670–1678

    Google Scholar 

  • Nossal R, Klinka CJ, Chen SH (1986) SANS studies of concentrated protein solutions I. Bovine serum albumin. Biopolymers 25:1157–1175

    Google Scholar 

  • Oosawa F, Imai N, Kagawa I (1954) Theory of strong polyelectrolyte solutions I. Coiled macro ions. J Polym Sci 13: 93–111

    Google Scholar 

  • Parsons R (1959) Handbook of electrochemical constants. Butterworths, London, p 20

    Google Scholar 

  • Pauly H (1973) Über den physikalisch-chemischen Zustand des Wassers und der Elektrolyte in der lebenden Zelle. Biophysik 10:7–32

    Google Scholar 

  • Peters Th Jr (1975) Serum albumin. In: Putnam FW (ed) The plasma proteins, 2nd edn. Academic Press, New York, pp 133–181

    Google Scholar 

  • Peters Th Jr (1985) Serum albumin. Adv Protein Chem 37: 161–245

    Google Scholar 

  • Pfister H (1970) Mittlerer Aktivitätskoeffizient von KCl in Zytoplasma-Fraktionen aus Kalbsleberzellen. Z Naturforsch 25:1130–1136

    Google Scholar 

  • Pfister H (1971) Das chemische Potential von Kaliumchlorid in konzentrierten Proteinlösungen. Ein Beitrag zum Verständnis des thermodynamischen Zustandes des Zytoplasmas. Thesis, Universität Erlangen-Nürnberg, FRG

  • Pfister H, Pauly H (1969) Einfluß von Diffusionspotentialen auf Membranpotential und Ionenaktivitätsmessungen in biologischen Systemen am Beispiel von KCl-Rinderserumalbumin-Lösungen. Biophysik 6:94–112

    Google Scholar 

  • Pfister H, Pauly H (1972) Chemical potential of KCl and its ion constituents in concentrated protein salt solutions. J Polym Sci Part C 39:179–189

    Google Scholar 

  • Reboiras MD, Pfister H, Pauly H (1978) Activity coefficients of salts in highly concentrated protein solutions. I. Alkali chlorides in isoionic bovine serum albumin solutions. Biophys Chem 9:37–46

    Google Scholar 

  • Reboiras MD, Pfister H, Pauly H (1986) Activity coefficients of salts in highly concentrated protein solutions. II. Potassium salts in isoionic bovine serum albumin solutions. Biophys Chem 24:249–257

    Google Scholar 

  • Rosen D (1963) Dielectric properties of protein powders with adsorbed water. Trans Faraday Soc 59:2178–2191

    Google Scholar 

  • Saroff HA, Carrol WR (1962) The binding of chloride and sulfate ions to ribonuclease. J Biol Chem 237:3384–3387

    Google Scholar 

  • Saroff HA, Lewis MS (1963) The binding of calcium ions to serum albumin. J Phys Chem 67:1211–1216

    Google Scholar 

  • Scatchard G (1953) Ion exchanger electrodes. J Am Chem Soc 75:2883–2887

    Google Scholar 

  • Scatchard G, Scheinberg IH, Armstrong SH Jr (1950a) Physical chemistry of protein solutions IV. The combination of human-serum albumin with chloride ion. J Am Chem Soc 72:535–540

    Google Scholar 

  • Scatchard G, Scheinberg IH, Armstrong SH Jr (1950b) Physical chemistry of protein solutions V. The combination of human serum albumin with thiocyanate ion. J Am Chem Soc 72:540–546

    Google Scholar 

  • Scatchard G, Coleman JS, Shen AL (1957) Physical chemistry of protein solutions VII. The binding of some small anions to serum albumin. J Am Chem Soc 79:12–19

    Google Scholar 

  • Scatchard G, Wu YV, Shen AL (1959) Physical chemistry of protein solutions X. The binding of small anions by serum albumin. J Am Chem Soc 81:6104–6109

    Google Scholar 

  • Schmid WH (1976) Der mittlere Aktivitätskoeffizient von einfachen Kaliumsalzen in konzentrierten Rinderhämoglobinlösungen. Thesis, Universität Erlangen-Nürnberg, FRG

  • Sollner K (1968) Membrane electrodes. Ann NY Acad Sci 148:154–179

    Google Scholar 

  • Steinhardt J, Reynolds JA (1969) Multiple equilibria in proteins. Academic Press, New York

    Google Scholar 

  • Tretter N (1975) Der Aktivitätskoeffizient von NaCl in hochkonzentrierten Hämoglobinlösungen und in Erythrozyten. Thesis, Universität Erlangen-Nürnberg, FRG

  • Tsien RY (1983) Intracellular measurements of ion activities. Annu Rev Biophys Bioeng 12:91–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocon, P., Acerete, C. & Reboiras, M.D. Activity coefficients of KCl in highly concentrated protein solutions. Eur Biophys J 14, 477–484 (1987). https://doi.org/10.1007/BF00293257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293257

Key words

Navigation