Skip to main content
Log in

A unique cytogenetic system in monotremes

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

All 3 extant genera of monotremes show a unique kind of cytogenetic system involving the formation of a structurally heterozygous chain multiple apparently coupled with a system of complementary gametic elimination. In the echidna Tachyglossus there are 63 chromosomes in the male and 64 in the female. This is associated with an X1X2Y♂/X1X1X2X2♀ sex chromosome system. Additionally in both sexes there are 6 mitotic chromosomes (a-f) which have no obvious homologous partners. At male meiosis these are included with the 3 sex chromosomes in a chain multiple of nine which has the constitution X1·Y·X2·f·e·d·c·b·a. This shows convergent orientation at first metaphase leading to the production of two kinds of sperm, namely X1X2 eca and Yfdb. Since no individual of either sex has been found homozygous for any of the a-f elements it follows that only gametes carrying different combinations of the three unpaired elements give rise to viable offspring. Whether this depends on gametic selection or on zygotic lethality is not known. An apparently identical system operates in Zaglossus. In the platypus Ornithorhynchus, on the other hand, there are 52 chromosomes in both males and females associated with an XY♂/XX♀ sex chromosome mechanism and the presence of 4 consistently unpaired elements (a-d) at mitosis. A chain multiple of 10 forms at male meiosis involving the 2 sex chromosomes, the 4 unpaired elements and two of the small pairs of autosomes. Additionally the six longest autosome pairs in Tachyglossus and the X1 show a polymorphism for size which in heterozygous combination leads to the formation of unequal bivalents at male meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bick, Y.A.E., Jackson, W.D.: A mammalian X-O sex-chromosome system in the monotreme Tachyglossus aculeatus determined from leucocyte cultures and testicular preparations. Amer. Naturalist 101, 79–86 (1967a)

    Google Scholar 

  • Bick, Y.A.E., Jackson, W.D.: Karyotype of the monotremes Ornithorhynchus anatinus (platypus) and Tachyglossus aculeatus (echidna). Nature (Lond.) 214, 600–601 (1967b)

    Google Scholar 

  • Bick, Y.A.E., Murtagh, C.E., Sharman, G.B.: The chromosomes of an egg-laying mammal, Tachyglossus aculeatus (the echidna). Cytobios 7, 233–243 (1973)

    Google Scholar 

  • Bick, Y.A.E., Sharman, G.B.: The chromosomes of the platypus (Ornithorhynchus: Monotremata). Cytobios 14, 17–28 (1975)

    Google Scholar 

  • Bougourd, S.M., Parker, J.S.: Nucleolar-organiser polymorphism in natural populations of Allium schoenoprasum. Chromosoma (Berl.) 56, 301–307 (1976)

    Google Scholar 

  • Brink, J.M. van: L'expression morphologique de la digamétie chez les Sauropsides et les Monotremes. Chromosoma (Berl.) 10, 1–72 (1959)

    Google Scholar 

  • Burrell, H.: The platypus, chapter XI. Angus and Robertson 1927

  • Cleland, R.E.: The cytogenetics of Oenothera. Advanc Genet. 2. New York-London: Academic Press 1962

    Google Scholar 

  • Cooper, D.W., Johnston, P.G., Sharman, G.B., VandeBerg, J.L.: The control of gene activity on eutherian and metatherian X chromosomes: A comparison. In: Reproduction and evolution. Proc. Fourth Int. Symp. of Comp. Biol. of Reproduction, pp. 81–87. Canberra: Australian Academy of Science 1977

    Google Scholar 

  • Cooper, D.W., VandeBerg, J.L., Griffiths, M.E., Ealey, E.H.M.: Haemoglobin polymorphisms in the echidna, Tachyglossus aculeatus. Aust. J. biol. Sci. 26, 605–612 (1973)

    Google Scholar 

  • Dutrillaux, B.: Study of human X-chromosomes with the 5 BrdU-acridine orange technique. Application to X chromosome pathology. Chromosomes today 5, 395–407 (1976)

    Google Scholar 

  • Flynn, T.T., Hill, J.P.: The development of the monotremata. Part IV. Growth of the ovarian ovum, maturation, fertilisation, and early cleavage. Trans. Zool. Soc. Lond. 24, Part 6 (1939)

    Google Scholar 

  • Griffiths, M.E.: Echidnas. Oxford: Pergamon Press 1968

    Google Scholar 

  • Gropp, A., Giers, D., Kolbus, U.: Trisomy in the fetal backcross progeny of male and female metacentric heterozygotes of the mouse. I. Cytogenet. Cell Genet. 13, 511–535 (1974)

    Google Scholar 

  • Hill, J.P., Gatenby, J.B.: The corpus luteum of the Monotremata. Proc. Zool. Soc. Lond. 1926, 715–763

  • Hopson, J.A.: The classification of non-therian mammals. J. Mamm. 51, 1–9 (1970)

    Google Scholar 

  • Hopson, J.A., Crompton, A.W.: Origin of Mammals. Evol. Biol. 3, 15–72 (1969)

    Google Scholar 

  • Iredale, T., Troughton, E. Le G.: A checklist of the mammals recorded from Australia. Mem. Aust. Mus. No. 6, (1934)

  • Kermack, K.A., Kielan-Jaworowska, S.: Therian and non-therian mammals. In: Early mammals (Kermack, D.M., and K.A. Kermack, eds.) pp. 103–115. London: Academic Press 1971

    Google Scholar 

  • Kint, J.A.: The enzyme defect in Fabry's disease. Nature (Lond.) 227, 1173 (1970)

    Google Scholar 

  • Lewontin, R.C.: The genetic basis of evolutionary change. New York-London: Columbia University Press 1974

    Google Scholar 

  • Meera Khan, P., Westerveld, A., Wurzen-Figurelli, E.M., Bootsma, D.: α-galactosidase in manchinese hamster somatic cell hybrids. Cytogenet. Cell Genet. 14, 375–380 (1975)

    Google Scholar 

  • Noda, S.: A new typed nucleolar chromosome and a supernumerary fragment chromosome in Allium cepa L. Mem. Fac. Science, Kyushu University, E. 1, 139–146 (1953)

    Google Scholar 

  • Ogawa, K.: Chromosome studies in the Myriapoda. VII. A chain association of the multiple sex-chromosomes found in Otocryptops sexspinosus (Say). Cytologia (Tokyo) 19, 265–272 (1954)

    Google Scholar 

  • Pathak, S., Hsu, T.C., Arrighi, F.E.: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet. Cell Genet. 12, 315–326 (1973)

    Google Scholar 

  • Rebourat, R., Weil, D., Van Cong, N., Frezal, J.: α-galactosidase: a dimeric enzyme dependent on a structural locus on the X-chromosome. Cytogenet. Cell Genet. 14, 406–408 (1975)

    Google Scholar 

  • Sharman, G.B., Johnston, P.G.: X chromosome inactivation in kangaroos (Marsupialia). In: Reproduction and evolution. Proc. Fourth Int. Symp. comp. Biol. of Reproduction, pp. 67–68. Canberra: Australian Academy of Science 1977

    Google Scholar 

  • Sutton, H.E.: An introduction to human genetics, 2nd ed., chapter 4. New York: Holt, Rinehart and Winston 1975

    Google Scholar 

  • VandeBerg, J.L.: Ph. D. Thesis, Macquarie University (1975)

  • Walker, E.P.: Mammals of the World, 2nd edit, vol 1, pp. 1–9 Baltimore: Johns Hopkins Press 1968

    Google Scholar 

  • White, M.J.D.: Animal cytology and evolution, 3rd ed., chap. 9. Cambridge: Cambridge University Press 1973

    Google Scholar 

  • Whittaker, R.G., Thompson, E.O.P.: Studies on monotreme proteins. V. Amino acid sequence of the α-chain of haemoglobin from the platypus, Ornithorhynchus anatinus. Aust. J. biol. Sci. 27, 591–605 (1974)

    Google Scholar 

  • Wiens, D., Barlow, B.A.: Permanent translocation heterozygosity and sex determination in East African mistletoes. Science 187, 1208–1209 (1975)

    Google Scholar 

  • Woodburne, M.O., Tedford, R.H.: The first Tertiary monotreme from Australia. Amer. Mus. Novit. 2588, 1–11 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murtagh, C.E. A unique cytogenetic system in monotremes. Chromosoma 65, 37–57 (1977). https://doi.org/10.1007/BF00293129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293129

Keywords

Navigation